2 resultados para 6:00 PM
em University of Queensland eSpace - Australia
Resumo:
Vascular disease is accelerated in patients with Type 2 diabetes mellitus (T2DM). Since the systemic vasculature plays a pivotal role in myocardial loading, this study aimed to determine the effect of arterial characteristics on left ventricular (LV) morphology and function in patients with T2DM. Conventional echocardiography and tissue Doppler imaging were performed in 172 T2DM patients (95 men; aged 55±11y) with preserved ejection fraction (62±5%). Patients were stratified into groups based on LV geometric pattern (normal [n = 79], concentric remodeling [n = 33], concentric hypertrophy [n = 29], eccentric hypertrophy [n = 31]). Total arterial compliance (TAC) was recorded by simultaneous radial tonometry and aortic outflow pulsed wave Doppler. Arterial (brachial and carotid) structure and function were determined by standard ultrasound methods. There were no significant differences between the LV geometric groups in demographic or clinical parameters. The concentric hypertrophy group had significantly increased carotid artery diameter (6.0±0.7mm versus 6.5±0.7mm; p < 0.05) and stiffness (1912±1203 dynes/cm2mm versus 2976±2695 dynes/cm2mm×10−6; p < 0.05) compared to those with normal geometry. However, TAC did not differ between groups. LV diastolic function, as determined by the ratio of diastolic mitral inflow velocity to mitral annulus tissue velocity (E/E_), was significantly associated with carotid artery relative wall thickness and intima media thickness (p < 0.05). Moreover, E/E_ was independently predicted by carotid artery relative wall thickness (β = 22.9; p = 0.007). We conclude that structural characteristics of the carotid artery are associated with abnormal LV structure and function in patients with T2DM. The LV functional irregularities may be a downstream consequence of amplified pressure wave reflections effecting sub-optimal ventricular-vascular interaction.
Resumo:
The XSophe computer simulation software suite consisting of a daemon, the XSophe interface and the computational program Sophe is a state of the art package for the simulation of electron paramagnetic resonance spectra. The Sophe program performs the computer simulation and includes a number of new technologies including; the SOPHE partition and interpolation schemes, a field segmentation algorithm, homotopy, parallelisation and spectral optimisation. The SOPHE partition and interpolation scheme along with a field segmentation algorithm greatly increases the speed of simulations for most systems. Multidimensional homotopy provides an efficient method for accurately tracing energy levels and hence tracing transitions in the presence of energy level anticrossings and looping transitions and allowing computer simulations in frequency space. Recent enhancements to Sophe include the generalised treatment of distributions of orientational parameters, termed the mosaic misorientation linewidth model and a faster more efficient algorithm for the calculation of resonant field positions and transition probabilities. For complex systems the parallelisation enables the simulation of these systems on a parallel computer and the optimisation algorithms in the suite provide the experimentalist with the possibility of finding the spin Hamiltonian parameters in a systematic manner rather than a trial-and-error process. The XSophe software suite has been used to simulate multifrequency EPR spectra (200 MHz to 6 00 GHz) from isolated spin systems (S > ~½) and coupled centres (Si, Sj _> I/2). Griffin, M.; Muys, A.; Noble, C.; Wang, D.; Eldershaw, C.; Gates, K.E.; Burrage, K.; Hanson, G.R."XSophe, a Computer Simulation Software Suite for the Analysis of Electron Paramagnetic Resonance Spectra", 1999, Mol. Phys. Rep., 26, 60-84.