5 resultados para 436

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Primary olfactory neurons that express the same odorant receptor are distributed mosaically throughout the olfactory neuroepithelium lining the nasal cavity, yet their axons converge and form discrete glomeruli in the olfactory bulb. We previously proposed that cell surface carbohydrates mediate the sorting out and selective fasciculation of primary olfactory axons en route to glomeruli. If this were the case, then axons that terminate in the same glomerulus would express the same complement of cell surface carbohydrates. In this study, we examined the expression of a novel carbohydrate (NOC-3) on neural cell adhesion molecule in the adult rat olfactory system. NOC-3 was expressed by a subset of neurons distributed throughout the olfactory neuroepithelium. The axons of these neurons entered the nerve fiber layer and terminated in a subset of glomeruli. It is interesting to note that we identified three unusually large glomeruli in the lateral, ventrolateral, and ventromedial olfactory bulb that were innervated by axons expressing NOC-3. NOC-3-expressing axons sorted out and fasciculated into discrete fascicles prior to entering these glomeruli. Each of these glomeruli was in a topographically fixed position in the olfactory bulbs of the same animal as well as in different animals, and their lengths were approximately 10% of the total length of the bulb. They could be identified reliably by both their topographical position and their unique morphology. These results reveal that axons expressing the same cell surface carbohydrates consistently target the same topographically fixed glomeruli, which supports a role for these molecules in axon navigation in the primary olfactory nerve pathway. J. Comp. Neurol. 436: 497-507, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Eph family of receptor tyrosine kinases and their ligands, the ephrins, are important regulators of axon guidance and cell migration in the developing nervous system. Inactivation of the EphA4 gene results in axon guidance defects of the corticospinal tract, a major descending motor pathway that originates in the cortex and terminates at all levels of the spinal cord. In this investigation, we report that although the initial development of the corticospinal projection is normal through the cortex, internal capsule, cerebral peduncle, and medulla in the brain of EphA4 deficient animals, corticospinal axons exhibit gross abnormalities when they enter the gray matter of the spinal cord. Notably, many corticospinal axons fail to remain confined to one side of the spinal cord during development and instead, aberrantly project across the midline, terminating ipsilateral to their cells of origin. Given the possible repulsive interactions between EphA4 and one of its ligands, ephrinB3, this defect could be consistent with a loss of responsiveness by corticospinal axons to ephrinB3 that is expressed at the spinal cord midline. Furthermore, we show that EphA4 deficient animals exhibit ventral displacement of the mature corticospinal termination pattern, suggesting that developing corticospinal axons, which may also express ephrinB3, fail to be repelled from areas of high EphA4 expression in the intermediate zone of the normal spinal cord. Taken together, these results suggest that the dual expression of EphA4 on corticospinal axons and also within the surrounding gray matter is very important for the correct development and termination of the corticospinal projection within the spinal cord. J. Comp. Neurol. 436: 248-262, 2001. (C) 2001 Wiley-Liss, Inc.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study the first measurements of DMSP in six species of corals and ten species of benthic algae collected from four coral reefs in the Great Barrier Reef are reported, together with DMSP measurements made on cultured zooxanthellae. Concentrations ranged from 21 to 3831 (mean=743) fmol DMSP zooxanthellae(-1) in corals, 0.16 to 2.96 nmol DMSP cm(-2) (mean=90) for benthic macroalgae, and 48-285 fmol DMSP zooxanthellae(-1) (mean=153) for cultured zooxanthellae. The highest concentrations of DMSP in corals occurred in Acropora formosa (mean= 371 fmol DMSP zooxanthellae(-1)) and Acropora palifera (mean=3341 fmol DMSP zooxanthellae(-1)) with concentrations in A. palifera the highest DMSP concentrations reported in corals examined to date. As well as inter-specific differences in DMSP, intra-specific variation was also observed. Adjacent colonies of A. formosa that are known to have different thermal bleaching thresholds and morphologically distinct zooxanthellae, were also observed to have different DMSP concentrations, with the zooxanthellae in the colony that bleached containing DMSP at an average concentration of 436 finol zooxanthellae(-1), whilst the non-bleaching colony contained DMSP at an average concentration of 171 finol zooxanthellae(-1). The results of the present study have been used to calculate the area normalized DMSP concentrations in benthic algae (mean=0.015 mmol m(-2)) and corals (mean=2.22 mmol m(-2)) from the GBR. This data indicates that benthic algae and corals are a significant reservoir of DMSP in GBR waters. (C) 2002 Published by Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The renal sodium-sulfate cotransporter, NaSi-1, a protein implicated to control serum sulfate levels, has been shown to be regulated in vivo by 1,25-dihydroxyvitamin D-3 (1,25-(OH)(2)D-3) and tri-iodothyronine (T-3). Recently, we cloned the mouse NaSi-1 gene (Nas1) and in the present study identified a 1,25-(OH)(2)D-3- and T-3-responsive element located within the Nas1 promoter. Mutational analysis of the Nas1 promoter resulted in identification of a direct repeat 6-type vitamin-D-responsive element (DR6 VDRE) at -525 to -508 and an imperfect inverted repeat 0-type T-3-responsive element (IR0 T3RE) at -436 to -425 which conferred 1,25(OH)(2)D-3 and T3 responsiveness, respectively. In summary, we have identified responsive elements that mediate the enhanced transcription of Nas1 by 1,25-(OH)(2)D-3 and T-3, and these mechanisms may provide important clues to the physiological control of sulfate homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A substantial number of GH regulated genes have been reported in mature hepatocytes. but genes involved in GH-initiated cell differentiation have not yet been identified. Here we have studied a, ell-characterised model of GH-dependent differentiation, adipogenesis of 3T3-F442A preadipocytes, to identify genes rapidly induced by GH. Using the suppression subtractive hybridisation technique, we have identified eight genes induced within 60 min of GH treatment, and verified these by northern analysis. Six were identifiable as Stat 2. Stat 3, thrombospondin-1. oncostatin M receptor beta chain. a DEAD box RNA helicase. and muscleblind. a developmental transcription factor. Bioinformatic approaches assigned one of the two remaining unknown genes as a novel 436 residue serine,threonine kinase. As each of the identified genes hake important developmental roles. they may be important in initiating GH-induced adipogenesis. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.