7 resultados para 3D interpolation

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present the correction of the geometric distortion measured in the clinical magnetic resonance imaging (MRI) systems reported in the preceding paper (Part 1) using a 3D method based on the phantom-mapped geometric distortion data. This method allows the correction to be made on phantom images acquired without or with the vendor correction applied. With the vendor's 2D correction applied, the method corrects for both the residual geometric distortion still present in the plane in which the correction method was applied (the axial plane) and the uncorrected geometric distortion along the axis non-nal to the plane. The evaluation of the effectiveness of the correction using this new method was carried out through analyzing the residual geometric distortion in the corrected phantom images. The results show that the new method can restore the distorted images in 3D nearly to perfection. For all the MRI systems investigated, the mean absolute deviations in the positions of the control points (along x-, y- and z-axes) measured on the corrected phantom images were all less than 0.2 mm. The maximum absolute deviations were all below similar to0.8 mm. As expected, the correction of the phantom images acquired with the vendor's correction applied in the axial plane performed equally well. Both the geometric distortion still present in the axial plane after applying the vendor's correction and the uncorrected distortion along the z-axis have all been restored. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An automated method for extracting brain volumes from three commonly acquired three-dimensional (3D) MR images (proton density, T1 weighted, and T2-weighted) of the human head is described. The procedure is divided into four levels: preprocessing, segmentation, scalp removal, and postprocessing. A user-provided reference point is the sole operator-dependent input required, The method's parameters were first optimized and then fixed and applied to 30 repeat data sets from 15 normal older adult subjects to investigate its reproducibility. Percent differences between total brain volumes (TBVs) for the subjects' repeated data sets ranged from .5% to 2.2%. We conclude that the method is both robust and reproducible and has the potential for wide application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To translate and transfer solution data between two totally different meshes (i.e. mesh 1 and mesh 2), a consistent point-searching algorithm for solution interpolation in unstructured meshes consisting of 4-node bilinear quadrilateral elements is presented in this paper. The proposed algorithm has the following significant advantages: (1) The use of a point-searching strategy allows a point in one mesh to be accurately related to an element (containing this point) in another mesh. Thus, to translate/transfer the solution of any particular point from mesh 2 td mesh 1, only one element in mesh 2 needs to be inversely mapped. This certainly minimizes the number of elements, to which the inverse mapping is applied. In this regard, the present algorithm is very effective and efficient. (2) Analytical solutions to the local co ordinates of any point in a four-node quadrilateral element, which are derived in a rigorous mathematical manner in the context of this paper, make it possible to carry out an inverse mapping process very effectively and efficiently. (3) The use of consistent interpolation enables the interpolated solution to be compatible with an original solution and, therefore guarantees the interpolated solution of extremely high accuracy. After the mathematical formulations of the algorithm are presented, the algorithm is tested and validated through a challenging problem. The related results from the test problem have demonstrated the generality, accuracy, effectiveness, efficiency and robustness of the proposed consistent point-searching algorithm. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Axial X-ray Computed tomography (CT) scanning provides a convenient means of recording the three-dimensional form of soil structure. The technique has been used for nearly two decades, but initial development has concentrated on qualitative description of images. More recently, increasing effort has been put into quantifying the geometry and topology of macropores likely to contribute to preferential now in soils. Here we describe a novel technique for tracing connected macropores in the CT scans. After object extraction, three-dimensional mathematical morphological filters are applied to quantify the reconstructed structure. These filters consist of sequences of so-called erosions and/or dilations of a 32-face structuring element to describe object distances and volumes of influence. The tracing and quantification methodologies were tested on a set of undisturbed soil cores collected in a Swiss pre-alpine meadow, where a new earthworm species (Aporrectodea nocturna) was accidentally introduced. Given the reduced number of samples analysed in this study, the results presented only illustrate the potential of the method to reconstruct and quantify macropores. Our results suggest that the introduction of the new species induced very limited chance to the soil structured for example, no difference in total macropore length or mean diameter was observed. However. in the zone colonised by, the new species. individual macropores tended to have a longer average length. be more vertical and be further apart at some depth. Overall, the approach proved well suited to the analysis of the three-dimensional architecture of macropores. It provides a framework for the analysis of complex structures, which are less satisfactorily observed and described using 2D imaging. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geographical information systems (GIS) coupled to 3D visualisation technology is an emerging tool for urban planning and landscape design applications. The utility of 3D GIS for realistically visualising the built environment and proposed development scenarios is much advocated in the literature. Planners assess the merits of proposed changes using visual impact assessment (VIA). We have used Arcview GIS and visualisation software: called PolyTRIM from the University of Toronto, Centre for Landscape Research (CLR) to create a 3D scene for the entrance to a University campus. The paper investigates the thesis that to facilitate VIA in planning and design requires not only visualisation, but also a structured evaluation technique (Delphi) to arbitrate the decision-making process. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most external assessments of cervical range of motion assess the upper and lower cervical regions simultaneously. This study investigated the within and between days reliability of the clinical method used to bias this movement to the upper cervical region, namely measuring rotation of the head and neck in a position of full cervical flexion. Measurements were made using the Fastrak measurement system and were conducted by one operator. Results indicated high levels of within and between days repeatability (range of ICC2,1 values: 0.85-0.95). The ranges of axial rotation to right and left, measured with the neck positioned in full flexion, were approximately 56% and 50%, respectively of total cervical rotation, which relates well to the proportional division of rotation in the upper and lower cervical regions. These results suggest that this method of measuring rotation would be appropriate for use in subject studies where movement dysfunction is present in the upper cervical region, such as those with cervicogenic headache. (C) 2003 Elsevier Science Ltd. All rights reserved.