51 resultados para 300803 Natural Resource Management

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the modem developments with classification trees are aimed at improving their predictive capacity. This article considers a curiously neglected aspect of classification trees, namely the reliability of predictions that come from a given classification tree. In the sense that a node of a tree represents a point in the predictor space in the limit, the aim of this article is the development of localized assessment of the reliability of prediction rules. A classification tree may be used either to provide a probability forecast, where for each node the membership probabilities for each class constitutes the prediction, or a true classification where each new observation is predictively assigned to a unique class. Correspondingly, two types of reliability measure will be derived-namely, prediction reliability and classification reliability. We use bootstrapping methods as the main tool to construct these measures. We also provide a suite of graphical displays by which they may be easily appreciated. In addition to providing some estimate of the reliability of specific forecasts of each type, these measures can also be used to guide future data collection to improve the effectiveness of the tree model. The motivating example we give has a binary response, namely the presence or absence of a species of Eucalypt, Eucalyptus cloeziana, at a given sampling location in response to a suite of environmental covariates, (although the methods are not restricted to binary response data).

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a theoretical explanation of the variations of the sediment delivery ratio (SDR) versus catchment area relationships and the complex patterns in the behavior of sediment transfer processes at catchment scale. Taking into account the effects of erosion source types, deposition, and hydrological controls, we propose a simple conceptual model that consists of two linear stores arranged in series: a hillslope store that addresses transport to the nearest streams and a channel store that addresses sediment routing in the channel network. The model identifies four dimensionless scaling factors, which enable us to analyze a variety of effects on SDR estimation, including (1) interacting processes of erosion sources and deposition, (2) different temporal averaging windows, and (3) catchment runoff response. We show that the interactions between storm duration and hillslope/channel travel times are the major controls of peak-value-based sediment delivery and its spatial variations. The interplay between depositional timescales and the travel/residence times determines the spatial variations of total-volume-based SDR. In practical terms this parsimonious, minimal complexity model could provide a sound physical basis for diagnosing catchment to catchment variability of sediment transport if the proposed scaling factors can be quantified using climatic and catchment properties.