84 resultados para 250603 Reaction Kinetics and Dynamics
em University of Queensland eSpace - Australia
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
The Direct Simulation Monte Carlo (DSMC) method is used to simulate the flow of rarefied gases. In the Macroscopic Chemistry Method (MCM) for DSMC, chemical reaction rates calculated from local macroscopic flow properties are enforced in each cell. Unlike the standard total collision energy (TCE) chemistry model for DSMC, the new method is not restricted to an Arrhenius form of the reaction rate coefficient, nor is it restricted to a collision cross-section which yields a simple power-law viscosity. For reaction rates of interest in aerospace applications, chemically reacting collisions are generally infrequent events and, as such, local equilibrium conditions are established before a significant number of chemical reactions occur. Hence, the reaction rates which have been used in MCM have been calculated from the reaction rate data which are expected to be correct only for conditions of thermal equilibrium. Here we consider artificially high reaction rates so that the fraction of reacting collisions is not small and propose a simple method of estimating the rates of chemical reactions which can be used in the Macroscopic Chemistry Method in both equilibrium and non-equilibrium conditions. Two tests are presented: (1) The dissociation rates under conditions of thermal non-equilibrium are determined from a zero-dimensional Monte-Carlo sampling procedure which simulates ‘intra-modal’ non-equilibrium; that is, equilibrium distributions in each of the translational, rotational and vibrational modes but with different temperatures for each mode; (2) The 2-D hypersonic flow of molecular oxygen over a vertical plate at Mach 30 is calculated. In both cases the new method produces results in close agreement with those given by the standard TCE model in the same highly nonequilibrium conditions. We conclude that the general method of estimating the non-equilibrium reaction rate is a simple means by which information contained within non-equilibrium distribution functions predicted by the DSMC method can be included in the Macroscopic Chemistry Method.
Resumo:
An efficient Lanczos subspace method has been devised for calculating state-to-state reaction probabilities. The method recasts the time-independent wave packet Lippmann-Schwinger equation [Kouri , Chem. Phys. Lett. 203, 166 (1993)] inside a tridiagonal (Lanczos) representation in which action of the causal Green's operator is affected easily with a QR algorithm. The method is designed to yield all state-to-state reaction probabilities from a given reactant-channel wave packet using a single Lanczos subspace; the spectral properties of the tridiagonal Hamiltonian allow calculations to be undertaken at arbitrary energies within the spectral range of the initial wave packet. The method is applied to a H+O-2 system (J=0), and the results indicate the approach is accurate and stable. (C) 2002 American Institute of Physics.
Resumo:
Resonance phenomena associated with the unimolecular dissociation of H2S --> SH + H have been investigated quantum mechanically by the Lanczos homogeneous filter diagonalization method using a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). Resonance energies, widths (rates), and product state distributions have been obtained. Both dissociation rates and product state distributions of SH show, strong fluctuations, indicating that the dissociation of H2S is essentially irregular. Statistical analysis of neighboring level spacing and width distributions also confirms this behavior. The dissociation rates and product state distributions are compared to the predictions of quantum phase space theory.
Resumo:
Bound and resonance states of HO2 have been calculated quantum mechanically by the Lanczos homogeneous filter diagonalization method [Zhang and Smith, Phys. Chem. Chem. Phys. 3, 2282 (2001); J. Chem. Phys. 115, 5751 (2001)] for nonzero total angular momentum J = 1,2,3. For lower bound states, agreement between the results in this paper and previous work is quite satisfactory; while for high lying bound states and resonances these are the first reported results. A helicity quantum number V assignment (within the helicity conserving approximation) is performed and the results indicate that for lower bound states it is possible to assign the V quantum numbers unambiguously, but for resonances it is impossible to assign the V helicity quantum numbers due to strong mixing. In fact, for the high-lying bound states, the mixing has already appeared. These results indicate that the helicity conserving approximation is not good for the resonance state calculations and exact quantum calculations are needed to accurately describe the reaction dynamics for HO2 system. Analysis of the resonance widths shows that most of the resonances are overlapping and the interferences between them lead to large fluctuations from one resonance to another. In accord with the conclusions from earlier J = 0 calculations, this indicates that the dissociation of HO2 is essentially irregular. (C) 2003 American Institute of Physics.
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Bound and resonance states of HO2 are calculated quantum mechanically using both the Lanczos homogeneous filter diagonalization method and the real Chebyshev filter diagonalization method for nonzero total angular momentum J=6 and 10, using a parallel computing strategy. For bound states, agreement between the two methods is quite satisfactory; for resonances, while the energies are in good agreement, the widths are in general agreement. The quantum nonzero-J specific unimolecular dissociation rates for HO2 are also calculated. (C) 2004 American Institute of Physics.
Resumo:
Bound and resonance states of HO2 have been calculated by both the complex Lanczos homogeneous filter diagonalisation (LHFD) method(1,2) and the real Chebyshev filter diagonalisation method(3,4) for non-zero total angular momentum J = 4 and 5. For bound states, the agreement between the two methods is quite satisfactory; for resonances while the energies are in good agreement, the widths are only in general agreement. The relative performances of the two iterative FD methods have also been discussed in terms of efficiency as well as convergence behaviour for such a computationally challenging problem. A helicity quantum number Ohm assignment (within the helicity conserving approximation) is performed and the results indicate that Coriolis coupling becomes more important as J increases and the helicity conserving approximation is not a good one for the HO2 resonance states.
Resumo:
We explore the calculation of unimolecular bound states and resonances for deep-well species at large angular momentum using a Chebychev filter diagonalization scheme incorporating doubling of the autocorrelation function as presented recently by Neumaier and Mandelshtam [Phys. Rev. Lett. 86, 5031 (2001)]. The method has been employed to compute the challenging J=20 bound and resonance states for the HO2 system. The methodology has firstly been tested for J=2 in comparison with previous calculations, and then extended to J=20 using a parallel computing strategy. The quantum J-specific unimolecular dissociation rates for HO2-> H+O-2 in the energy range from 2.114 to 2.596 eV have been reported for the first time, and comparisons with the results of Troe and co-workers [J. Chem. Phys. 113, 11019 (2000) Phys. Chem. Chem. Phys. 2, 631 (2000)] from statistical adiabatic channel method/classical trajectory calculations have been made. For most of the energies, the reported statistical adiabatic channel method/classical trajectory rate constants agree well with the average of the fluctuating quantum-mechanical rates. Near the dissociation threshold, quantum rates fluctuate more severely, but their average is still in agreement with the statistical adiabatic channel method/classical trajectory results.
Resumo:
We present an efficient and robust method for calculating state-to-state reaction probabilities utilising the Lanczos algorithm for a real symmetric Hamiltonian. The method recasts the time-independent Artificial Boundary Inhomogeneity technique recently introduced by Jang and Light (J. Chem. Phys. 102 (1995) 3262) into a tridiagonal (Lanczos) representation. The calculation proceeds at the cost of a single Lanczos propagation for each boundary inhomogeneity function and yields all state-to-state probabilities (elastic, inelastic and reactive) over an arbitrary energy range. The method is applied to the collinear H + H-2 reaction and the results demonstrate it is accurate and efficient in comparison with previous calculations. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.