6 resultados para 2320 Sensory Perception
em University of Queensland eSpace - Australia
Resumo:
The McGurk effect, in which auditory [ba] dubbed onto [go] lip movements is perceived as da or tha, was employed in a real-time task to investigate auditory-visual speech perception in prelingual infants. Experiments 1A and 1B established the validity of real-time dubbing for producing the effect. In Experiment 2, 4(1)/(2)-month-olds were tested in a habituation-test paradigm, in which 2 an auditory-visual stimulus was presented contingent upon visual fixation of a live face. The experimental group was habituated to a McGurk stimulus (auditory [ba] visual [ga]), and the control group to matching auditory-visual [ba]. Each group was then presented with three auditory-only test trials, [ba], [da], and [deltaa] (as in then). Visual-fixation durations in test trials showed that the experimental group treated the emergent percept in the McGurk effect, [da] or [deltaa], as familiar (even though they had not heard these sounds previously) and [ba] as novel. For control group infants [da] and [deltaa] were no more familiar than [ba]. These results are consistent with infants'perception of the McGurk effect, and support the conclusion that prelinguistic infants integrate auditory and visual speech information. (C) 2004 Wiley Periodicals, Inc.
Resumo:
Human faces and bodies are both complex and interesting perceptual objects, and both convey important social information. Given these similarities between faces and bodies, we can ask how similar are the visual processing mechanisms used to recognize them. It has long been argued that faces are subject to dedicated and unique perceptual processes, but until recently, relatively little research has focused on how we perceive the human. body. Some recent paradigms indicate that faces and bodies are processed differently; others show similarities in face and body perception. These similarities and differences depend on the type of perceptual task and the level of processing involved. Future research should take these issues into account.
Resumo:
Objectives: To investigate sensory changes present in patients with chronic whiplash-associated disorders and chronic idiopathic neck pain using a variety of quantitative sensory tests to better understand the pain processing mechanisms underlying persistent symptoms. Methods: A case control study was used with 29 subjects with chronic whiplash-associated disorders, 20 subjects with chronic idiopathic neck pain, and 20 pain-free volunteers. Pressure pain thresholds were measured over the articular pillars of C2-C3, C5-C6, the median, radial, and ulnar nerve trunks in the arm and over a remote site, the muscle belly of tibialis anterior. Heat pain thresholds, cold pain thresholds, and von Frey hair sensibility were measured over the cervical spine, tibialis anterior, and deltoid insertion. Anxiety was measured with the Short-Form of the Spielberger State Anxiety Inventory. Results: Pressure pain thresholds were decreased over cervical spine sites in both subject groups when compared with controls (P < 0.05). In the chronic whiplash-associated disorders group, pressure pain thresholds were also decreased over the tibialis anterior, median, and radial nerve trunks (P < 0.001). Heat pain thresholds were decreased and cold pain thresholds increased at all sites (P < 0.03). No differences in heat pain thresholds or cold pain thresholds were evident in the idiopathic neck pain group at any site compared with the control group (P > 0.27). No abnormalities in von Frey hair sensibility were evident in either neck pain group (P > 0.28). Discussion: Both chronic whiplash-associated disorders and idiopathic neck pain groups were characterized by mechanical hyperalgesia over the cervical spine. Whiplash subjects showed additional widespread hypersensitivity to mechanical pressure and thermal stimuli, which was independent of state anxiety and may represent changes in central pain processing mechanisms. This may have implications for future treatment approaches.
Resumo:
It has been demonstrated, using abstract psychophysical stimuli, that speeds appear slower when contrast is reduced under certain conditions. Does this effect have any real life consequences? One previous study has found, using a low fidelity driving simulator, that participants perceived vehicle speeds to be slower in foggy conditions. We replicated this finding with a more realistic video-based simulator using the Method of Constant Stimuli. We also found that lowering contrast reduced participants’ ability to discriminate speeds. We argue that these reduced contrast effects could partly explain the higher crash rate of drivers with cataracts (this is a substantial societal problem and the crash relationship variance can be accounted for by reduced contrast). Note that even if people with cataracts can calibrate for the shift in their perception of speed using their speedometers (given that cataracts are experienced over long periods), they may still have an increased chance of making errors in speed estimation due to poor speed discrimination. This could result in individuals misjudging vehicle trajectories and thereby inflating their crash risk. We propose interventions that may help address this problem.
Resumo:
Fuzzy signal detection analysis can be a useful complementary technique to traditional signal detection theory analysis methods, particularly in applied settings. For example, traffic situations are better conceived as being on a continuum from no potential for hazard to high potential, rather than either having potential or not having potential. This study examined the relative contribution of sensitivity and response bias to explaining differences in the hazard perception performance of novices and experienced drivers, and the effect of a training manipulation. Novice drivers and experienced drivers were compared (N = 64). Half the novices received training, while the experienced drivers and half the novices remained untrained. Participants completed a hazard perception test and rated potential for hazard in occluded scenes. The response latency of participants to the hazard perception test replicated previous findings of experienced/novice differences and trained/untrained differences. Fuzzy signal detection analysis of both the hazard perception task and the occluded rating task suggested that response bias may be more central to hazard perception test performance than sensitivity, with trained and experienced drivers responding faster and with a more liberal bias than untrained novices. Implications for driver training and the hazard perception test are discussed.