2 resultados para 205-1255A

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classic Hodgkin's lymphoma (HL) tissue contains a small population of morphologically distinct malignant cells called Hodgkin and Reed-Sternberg (HRS) cells, associated with the development of HL. Using 3'-rapid amplification of cDNA ends ( RACE) we identified an alternative mRNA for the DEC-205 multilectin receptor in the HRS cell line L428. Sequence analysis revealed that the mRNA encodes a fusion protein between DEC-205 and a novel C-type lectin DCL-1. Although the 7.5-kb DEC-205 and 4.2-kb DCL-1 mRNA were expressed independently in myeloid and B lymphoid cell lines, the DEC-205/DCL-1 fusion mRNA (9.5 kb) predominated in the HRS cell lines ( L428, KM-H2, and HDLM-2). The DEC-205 and DCL-1 genes comprising 35 and 6 exons, respectively, are juxtaposed on chromosome band 2q24 and separated by only 5.4 kb. We determined the DCL-1 transcription initiation site within the intervening sequence by 5'-RACE, confirming that DCL-1 is an independent gene. Two DEC-205/DCL-1 fusion mRNA variants may result from cotranscription of DEC-205 and DCL-1, followed by splicing DEC-205 exon 35 or 34-35 along with DCL-1 exon 1. The resulting reading frames encode the DEC-205 ectodomain plus the DCL-1 ectodomain, the transmembrane, and the cytoplasmic domain. Using DCL-1 cytoplasmic domain-specific polyclonal and DEC-205 monoclonal antibodies for immunoprecipitation/Western blot analysis, we showed that the fusion mRNA is translated into a DEC-205/DCL-1 fusion protein, expressed in the HRS cell lines. These results imply an unusual transcriptional control mechanism in HRS cells, which cotranscribe an mRNA containing DEC-205 and DCL-1 prior to generating the intergenically spliced mRNA to produce a DEC-205/DCL-1 fusion protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DEC-205 (CD205) belongs to the macrophage mannose receptor family of C-type lectin endocytic receptors and behaves as an antigen uptake/processing receptor for dendritic cells (DC). To investigate DEC-205 tissue distribution in human leukocytes, we generated a series of anti-human DEC-205 monoclonal antibodies (MMRI-5, 6 and 7), which recognized epitopes within the C-type lectin-like domains 1 and 2, and the MMRI-7 immunoprecipitated a single similar to 200 kDa band, identified as DEC-205 by mass spectrometry. MMRI-7 and another DEC-205 mAb (MG38), which recognized the epitope within the DEC-205 cysteine-rich and fibronectin type II domain, were used to examine DEC-205 expression by human leukocytes. Unlike mouse DEC-205, which is reported to have predominant expression on DC, human DEC-205 was detected by flow cytometry at relatively high levels on myeloid blood DC and monocytes, at moderate levels on B lymphocytes and at low levels on NK cells, plasmacytoid blood DC and T lymphocytes. MMRI-7 F(ab')(2) also labeled monocytes, B lymphocytes and NK cells similarly excluding reactivity due to non-specific binding of the mAb to Fc gamma R. Tonsil mononuclear cells showed a similar distribution of DEC-205 staining on the leukocytes. DEC-205-specific semiquantitative immunoprecipitation/western blot and quantitative reverse transcriptase-PCR analysis established that these leukocyte populations expressed DEC-205 protein and the cognate mRNA. Thus, human DEC-205 is expressed on more leukocyte populations than that were previously assumed based on mouse DEC-205 tissue localization studies. The broader DEC-205 tissue expression in man is relevant to clinical DC targeting strategies and DEC-205 functional studies.