6 resultados para 2-domain Arginine Kinase
em University of Queensland eSpace - Australia
Resumo:
This report describes the presence of a unique dual domain carbonic anhydrase (CA) in the giant clam, Tridacna gigas. CA plays an important role in the movement of inorganic carbon (C-i) from the surrounding seawater to the symbiotic algae that are found within the clam's tissue. One of these isoforms is a glycoprotein which is significantly larger (70 kDa) than any previously reported from animals (generally between 28 and 52 kDa). This alpha-family CA contains two complete carbonic anhydrase domains within the one protein, accounting for its large size; dual domain CAs have previously only been reported from two algal species. The protein contains a leader sequence, an N-terminal CA domain and a C-terminal CA domain. The two CA domains have relatively little identity at the amino acid level (29%). The genomic sequence spans in excess of 17 kb and contains at least 12 introns and 13 exons. A number of these introns are in positions that are only found in the membrane attached/secreted CAs. This fact, along with phylogenetic analysis, suggests that this protein represents the second example of a membrane attached invertebrate CA and it contains a dual domain structure unique amongst all animal CAs characterized to date.
Resumo:
The vitamin D receptor (VDR) mediates the effects of 1,25(OH)(2)D-3, the active form of vitamin D. The human VDRB1 isoform differs from the originally described VDR by an N-terminal extension of 50 amino acids. Here we investigate cell-, promoter-, and ligand-specific transactivation by the VDRB1 isoform. Transactivation by these isoforms of the cytochrome P450 CYP24 promoter was compared in kidney (HEK293 and COS1), tumor-derived colon (Caco-2, LS174T, and HCT15), and mammary (HS578T and MCF7) cell lines. VDRB1 transactivation in response to 1,25(OH)(2)D-3 was greater in Cost and HCT15 cells (145%), lower in HEK293 and Caco-2 cells (70-85%) and similar in other cell lines tested. By contrast, on the cytochrome P450 CYP3A4 promoter, 1,25(OH)(2)D-3-induced VDRB1 transactivation was significantly lower than VDRA in Caco-2 (68%), but comparable to VDRA in HEK293 and COS1 cells. Ligand-dependence of VDRB1 differential transactivation was investigated using the secondary bile acid lithocholic acid (LCA). On the CYP24 promoter LCA-induced transactivation was similar for both isoforms in COS1, whereas in Caco-2 and HEK293 cells VDRB1 was less active. On the CYP3A4 promoter, LCA activation of VDRB1 was comparable to VDRA in all the cell lines tested. Mutational analysis indicated that both the 1,25(OH)(2)D-3 and LCA-regulated activities of both VDR isoforms required a functional ligand-dependent activation function (AF-2) domain. In gel shift assays VDR:DNA complex formation was stronger in the presence of 1,25(OH)(2)D-3 than with LCA. These results indicate that regulation of VDRB1 transactivation activity is dependent on cellular context, promoter, and the nature of the ligand. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
The aim was to investigate the roles of transmembrane domain 2 and the adjacent region of the first intracellular loop in determining human noradrenaline transporter (hNET) function by pharmacological and substituted-cysteine accessibility method (SCAM) analyses. It was first necessary to establish a suitable background NET for SCAM. Alanine mutants of endogenous hNET cysteines, hC86A, hC131A and hC339A, were examined and showed no marked effects on expression or function. hNET and the mutants were also resistant to methanethiosulfonate (MTS), ethylammonium (MTSEA) and MTStrimethylammonium (MTSET). Hence, wild-type hNET is an appropriate background for production of cysteine mutants for SCAM. Pharmacological investigation showed that all mutants except hT99C and hL109C showed reduced cell-surface expression, while all except hM107C showed a reduction in functional activity. The mutations did not markedly affect the apparent affinities of substrates, but apparent affinities of cocaine were decreased 7-fold for hP97C and 10-fold for hF101C and increased 12-fold for hY98C. [H-3]Nisoxetine binding affinities were decreased 13-fold for hP97C and 5-fold for hF101C. SCAM analysis revealed that only hL102C was sensitive to 1.25 mM MTSEA, and this sensitivity was protected by noradrenaline, nisoxetine and cocaine. The results suggest that this region of hNET is important for interactions with antidepressants and cocaine, but it is probably not involved in substrate translocation mechanisms.