7 resultados para 13C-Harnstoff-Atemtest

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrofluoric acid (HF) was used to pre-treat forest soils of south-east Queensland for assessing the effectiveness of iron (Fe) removal, carbon (C) composition using C-13 cross-polarisation (CP) with magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) before and after the HF pre-treatment, and the improvement of C-13 CPMAS NMR spectra. Soil samples were collected from 4 experimental sites of different soil types, harvest residue management or prescribed burning, and tree species. More than 86% of Fe was in all soil types removed by the HF treatment. The C-13 NMR spectral quality was improved with increased resolution, especially in the alkyl C and O-alkyl C regions, and reduced NMR run-time (1-5 h per sample compared with >20 h per sample without the pre-treatment). The C composition appeared to alter slightly after the pre-treatment, but this might be largely due to improved spectrometer conditions and increased resolution leading to more accurate NMR spectral integration. Organic C recovery after HF pre-treatment varied with soil types and forest management, and soluble soil organic matter (SOM) could be lost during the pre-treatment. The Fourier Transform-Infrared (FT-IR) spectra of HF extracts indicated the preferential removal of carboxylic C groups during the pre-treatment, but this could also be due to adsorbed water on the mineral matter. The NMR spectra revealed some changes in C composition and quality due to residue management and decomposition. Overall, the HF treatment was a useful pre-treatment for obtaining semi-quantitative C-13 CPMAS NMR spectra of subtropical Australian forest soils.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The C-13 NMR data of five iminopropadienones R-N=C=C=C=O as well as carbon suboxide, C3O2, have been examined theoretically and experimentally. The best theoretical results were obtained using the GIAO/B3LYP/6-31 +G**//MP2/6-31G* level of theory, which reproduces the chemical shifts of the iminopropadienone substituents extremely well while underestimating those of the cumulenic carbons by 5-10 ppm. The computationally faster GIAO/HF/6-31 + G**//B3LYP/6-31 G* level is also adequate. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent research suggests that future decreases in the carbonate saturation state of surface seawater associated with the projected build-up of atmospheric CO2 could cause a global decline in coral reef-building capacity. Whether significant reductions in coral calcification are underway is a matter of considerable debate. Multicentury records of skeletal calcification extracted from massive corals have the potential to reconstruct the progressive effect of anthropogenic changes in carbonate saturation on coral reefs. However, early marine aragonite cements are commonly precipitated from pore waters in the basal portions of massive coral skeletons and, if undetected, could result in apparent nonlinear reductions in coral calcification toward the present. To address this issue, we present records of coral skeletal density, extension rate, calcification rate, δ13C, and δ18O for well preserved and diagenetically altered coral cores spanning ∼1830-1994 A.D. at Ningaloo Reef Marine Park, Western Australia. The record for the pristine coral shows no significant decrease in skeletal density or δ13C indicative of anthropogenic changes in carbonate saturation state or δ13C of surface seawater (oceanic Suess effect). In contrast, progressive addition of early marine inorganic aragonite toward the base of the altered coral produces an apparent ∼25% decrease in skeletal density toward the present, which misleadingly matches the nonlinear twentieth century decrease in coral calcification predicted by recent modeling and experimental studies. In addition, the diagenetic aragonite is enriched in 13C, relative to coral aragonite, resulting in a nonlinear decrease in δ13C toward the present that mimics the decrease in δ13C expected from the oceanic Suess effect. Taken together, these diagenetic changes in skeletal density and δ13C could be misinterpreted to reflect changes in surface-ocean carbonate saturation state driven by the twentieth century build-up of atmospheric CO2. Copyright 2004 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pilot study of tree rings in a modern mangrove tree (Rhizophora apiculata) from Leizhou Peninsula, northern South China Sea shows that ( 1) the tree-rings are annual; ( 2) the ring widths decrease; and ( 3) their alpha-cellulose delta(13)C values increase from 1982 to 1999 AD, consistent with the trends of annual sea level, salinity and sea surface temperatures in the same period. We propose that such changes were caused by increasingly longer duration of waterlogging in response to sea-level rise. If this is the case, alpha-cellulose delta(13)C in mangrove tree rings can be used as a potential indicator of past sea level fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis, spectroscopic properties, and chemical reactions of the stable (neopentylimino)-, (mesitylimino)-, and (o-tert-butylphenylimino)propadienones (6) are reported. Nucleophilic addition of amines affords the malonic amidoamidines 7 and 8. 3,5-Dimethylpyrazole reacts analogously to form 9b. Addition of 1,2-dimethylhydrazine produces pyrazolinones 10-12. Addition of N,Y'-dimethyldiaminoethane, -propane, and -butane gives diazepine, diazocine, and diazonine derivatives 13-15, respectively (X-ray structures of 13c, 14a, and 15a are available). The mesoionic pyridopyrimidinium olates IS are obtained by addition of 2-(methylamino)pyridine (X-ray structure of 18b available). Primary 2-aminopyridines afford the pyridopyrimidininones 20-29 and 31 (X-ray structure of 21a available), and 2-aminopyrimidines and 2-aminopyrazine afford pyrimidopyrimidinones and pyrazinopyrimidinones 33-35. Pyrimidoisoquinolinone 36 results from 1-aminoisoquinoline and pyridoquinolinone 40 from 8-aminoquinoline. 2-Aminothiazoline and 2-aminothiazole afford thiazolopyrimidinone derivatives 41-43 (X-ray structure of 43a available).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid-state C-13 nuclear magnetic resonance (NMR) with cross-polarisation (CP) and magic-angle-spinning (MAS) was used to: (a) examine the changes in carbon (C) composition of windrowed harvest residues during the first 3 years of hoop pine plantations in subtropical Australia; (b) assess the impacts of windrowed harvest residues on soil organic matter (SOM) composition and quality in the 0-10 cm soil layer. Harvest residues were collected from 0-, 1-, 2- and 3-year-old windrows of ca. 2.5 m width (15 m apart for 0-, 1- and 2-year-old sites and 10 m apart for 3-year-old site). Soils from the 0 to 10 cm soil layer were collected from the 1-, 2- and 3-year-old sites. The 13C NMR spectra of the harvest residues indicated the presence of lignin in the hoop pine wood, foliage and newly incorporated organic matter (NIOM). Condensed tannin structures were found in the decay-resistant bark, small wood and foliage, but were absent in other residue components and SOM. The NMR spectra of small wood samples contained condensed tannin structures because the outer layer of bark was not removed. NIOM showed a shift from foliage-like structures (celluloses) to lignin-type structures, indicating an incorporation of woody residues from the decomposing harvest residues. Suberins were also present in the small wood, foliage and bark. The 13C CP NMR spectra of SOM indicated that in areas where windrows were present, SOM did not show compositional changes. However, an increase in SOM quality under the windrows in the second year after their formation as characterised by the alkyl C/O-alkyl C (A/O-A) ratio was mainly due to inputs from the decomposition of the labile, readily available components of the windrowed harvest residues. (C) 2002 Published by Elsevier Science B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the influence of harvest residue management practices on soil organic matter (SOM) composition and quality from two second-rotation Eucalyptus globulus plantations in southwestern Australia, using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy with cross-polarisation and magic-angle-spinning (CPMAS). Soil samples (0–5 cm) were collected every 12 months for 5 years from two sites that had contrasting soil types and fertility. Harvest residue management treatments established at both sites were (a) no harvest residues; and (b) double harvest residues. The use of 13C CPMAS and DD NMR spectroscopy enabled the successful non-destructive detection of SOM quality changes in the two E. globulus plantations. Relative intensities of 13C CPMAS NMR spectral regions were similar at both sites, and for both harvest residue treatments, indicating that SOM composition was also similar. Dipolar dephasing (DD) NMR spectra revealed resonances in SOM assigned to lignin and tannin structures, with larger resonances in the carbonyl and alkyl C regions that were indicative of cuticular material, enabling detection of changes in SOM quality. Retention of double harvest residues on the soil surface increased the soil quality compared with removal of all harvest residues at both sites as indicated by the NMR aromaticities, but this was most noticeable at Manjimup, which had greater initial soil fertility.