11 resultados para 120402 Engineering Design Knowledge

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Creativity is increasingly recognised as an essential component of engineering design. This paper describes an exploratory study into the nature and importance of creativity in engineering design problem solving in relation to the possible impact of software design tools. The first stage of the study involved an empirical investigation in the form of a case study of the use of standard CAD tool sets and the development of a systems engineering software support tool. It was found that there were several ways in which CAD influenced the creative process, including enhancing visualisation and communication, premature fixation, circumscribed thinking and bounded ideation. The tool development experience uncovered the difficulty in supporting creative processes from the developer's perspective. The issues were the necessity of making assumptions, achieving a balance between structure and flexibility, and the pitfalls of satisfying user wants and needs. The second part of the study involved the development of a model of the creative problem solving process in engineering design. This provided a possible explanation for why purpose designed engineering software tools might encourage an analytical problem solving approach and discourage a more creative approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper highlights the importance of design expertise, for designing liquid retaining structures, including subjective judgments and professional experience. Design of liquid retaining structures has special features different from the others. Being more vulnerable to corrosion problem, they have stringent requirements against serviceability limit state of crack. It is the premise of the study to transferring expert knowledge in a computerized blackboard system. Hybrid knowledge representation schemes, including production rules, object-oriented programming, and procedural methods, are employed to express engineering heuristics and standard design knowledge during the development of the knowledge-based system (KBS) for design of liquid retaining structures. This approach renders it possible to take advantages of the characteristics of each method. The system can provide the user with advice on preliminary design, loading specification, optimized configuration selection and detailed design analysis of liquid retaining structure. It would be beneficial to the field of retaining structure design by focusing on the acquisition and organization of expert knowledge through the development of recent artificial intelligence technology. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Owing to the high degree of vulnerability of liquid retaining structures to corrosion problems, there are stringent requirements in its design against cracking. In this paper, a prototype knowledge-based system is developed and implemented for the design of liquid retaining structures based on the blackboard architecture. A commercially available expert system shell VISUAL RULE STUDIO working as an ActiveX Designer under the VISUAL BASIC programming environment is employed. Hybrid knowledge representation approach with production rules and procedural methods under object-oriented programming are used to represent the engineering heuristics and design knowledge of this domain. It is demonstrated that the blackboard architecture is capable of integrating different knowledge together in an effective manner. The system is tailored to give advice to users regarding preliminary design, loading specification and optimized configuration selection of this type of structure. An example of application is given to illustrate the capabilities of the prototype system in transferring knowledge on liquid retaining structure to novice engineers. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The design of liquid-retaining structures involves many decisions to be made by the designer based on rules of thumb, heuristics, judgement, codes of practice and previous experience. Structural design problems are often ill structured and there is a need to develop programming environments that can incorporate engineering judgement along with algorithmic tools. Recent developments in artificial intelligence have made it possible to develop an expert system that can provide expert advice to the user in the selection of design criteria and design parameters. This paper introduces the development of an expert system in the design of liquid-retaining structures using blackboard architecture. An expert system shell, Visual Rule Studio, is employed to facilitate the development of this prototype system. It is a coupled system combining symbolic processing with traditional numerical processing. The expert system developed is based on British Standards Code of Practice BS8007. Explanations are made to assist inexperienced designers or civil engineering students to learn how to design liquid-retaining structures effectively and sustainably in their design practices. The use of this expert system in disseminating heuristic knowledge and experience to practitioners and engineering students is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, technology is described as involving processes whereby resources are utilised to satisfy human needs or to take advantage of opportunities, to develop practical solutions to problems. This study, set within one type of technology context, information technology, investigated how, through a one semester undergraduate university course, elements of technological processes were made explicit to students. While it was acknowledged in the development and implementation of this course that students needed to learn technical skills, technological skills and knowledge, including design, were seen as vital also, to enable students to think about information technology from a perspective that was not confined and limited to 'technology as hardware and software'. This paper describes how the course, set within a three year program of study, was aimed at helping students to develop their thinking and their knowledge about design processes in an explicit way. An interpretive research approach was used and data sources included a repertory grid 'survey'; student interviews; video recordings of classroom interactions, audio recordings of lectures, observations of classroom interactions made by researchers; and artefacts which included students' journals and portfolios. The development of students' knowledge about design practices is discussed and reflections upon student knowledge development in conjunction with their learning experiences are made. Implications for ensuring explicitness of design practice within information technology contexts are presented, and the need to identify what constitutes design knowledge is argued.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doped ceria (CeO2) compounds are fluorite related oxides which show oxide ionic conductivity higher than yttria-stabilized zirconia in oxidizing atmosphere. As a consequence of this, a considerable interest has been shown in application of these materials for low (400-650 degrees C) temperature operation of solid oxide fuel cells (SOFCs). In this paper, our experimental data about the influence of microstructure at the atomic level on electrochemical properties were reviewed in order to develop high quality doped CeO2 electrolytes in fuel cell applications. Using this data in the present paper, our original idea for a design of nanodomain structure in doped CeO2 electrolytes was suggested. The nanosized powders and dense sintered bodies of M doped CeO2 (M:Sm,Gd,La,Y,Yb, and Dy) compounds were fabricated. Also nanostiructural features in these specimens were introduced for conclusion of relationship between electrolytic properties and domain structure in doped CeO2. It is essential that the electrolytic properties in doped CeO2 solid electrolytes reflect in changes of microstructure even down to the atomic scale. Accordingly, a combined approach of nanostructure fabrication, electrical measurement and structure characterization was required to develop superior quality doped CeO2 electrolytes in the fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer-based, socio-technical systems projects are frequently failures. In particular, computer-based information systems often fail to live up to their promise. Part of the problem lies in the uncertainty of the effect of combining the subsystems that comprise the complete system; i.e. the system's emergent behaviour cannot be predicted from a knowledge of the subsystems. This paper suggests uncertainty management is a fundamental unifying concept in analysis and design of complex systems and goes on to indicate that this is due to the co-evolutionary nature of the requirements and implementation of socio-technical systems. The paper shows a model of the propagation of a system change that indicates that the introduction of two or more changes over time can cause chaotic emergent behaviour.