2 resultados para 120-747
em University of Queensland eSpace - Australia
Resumo:
The effect of methyl jasmonate treatment on gene expression in sugarcane roots signalling between roots and shoots was studied. A collection of 829 ESTs were obtained from sugarcane roots treated with the defence-regulator methyl jasmonate (MJ) treatment. A subset of 747 of these were combined with 4793 sugarcane ESTs obtained from stem tissues in a cDNA microarray and experiments undertaken to identify genes that were induced in roots 24-120 h following treatment with MJ. Two data analysis systems (t-statistic and tRMA) were used to analyse the microarray results and these methods identified a common set of 21 ESTs corresponding to transcripts significantly induced by MJ in roots and 23 that were reduced in expression following MJ treatment. The induction of six transcripts identified in the microarray analysis was tested and confirmed using northern blotting. Homologues of genes encoding lipoxygenase and PR-10 proteins were induced 824 It after MJ treatment while the other four selected transcripts were induced at later time points. Following treatment of roots with MJ, the lipoxygenase homologue, but not the PR-10 homologue, was induced in untreated stem and leaf tissues. The PR-10 homologue and a PR-1 homologue, but not the lipoxygenase homologue, were induced in untreated tissues after the application of SA to roots. Repeated foliar application of MJ had no apparent effects on plant growth and was demonstrated to increase lipoxygenase transcripts in roots, but did not increase transcript levels-of other genes tested. These results lay a foundation for further studies of induced pest and disease resistance in sugarcane roots. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The discovery of the Woodleigh impact structure, first identified by R. P. lasky, bears a number of parallels with that of the Chlcxulub impact structure of K-T boundary age, underpinning complications inherent in the study of buried impact structures by geophysical techniques and drilling. Questions raised in connection with the diameter of the Woodleigh impact structure reflect uncertainties in criteria used to define original crater sizes in eroded and buried impact structures as well as limits on the geological controls at Woodleigh. The truncation of the regional Ajona - Wandagee gravity ridges by the outer aureole of the Woodleigh structure, a superposed arcuate magnetic anomaly along the eastern part of the structure, seismic-reflection data indicating a central > 37 km-diameter dome, correlation of fault patterns between Woodleigh and less-deeply eroded impact structures (Ries crater, Chesapeake Bay), and morphometric estimates all indicate a final diameter of 120 km. At Woodleigh, pre-hydrothermal shock-induced melting and diaplectic transformations are heavily masked by pervasive alteration of the shocked gneisses to montmorillonite-dominated clays, accounting for the high MgO and low K2O of cryptocrystalline components. The possible contamination of sub-crater levels of the Woodlelgh impact structure by meteoritic components, suggested by high Ni, Co, Cr, Ni/ Co and Ni/Cr ratios, requires further siderophile element analyses of vein materials. Although stratigraphic age constraints on the impact event are broad (post-Middle Devonian to pre-Early Jurassic) high-temperature (200-250 degrees C) pervasive hydrothermal activity dated by K-Ar isotopes of illite - smectite indicates an age of 359 +/- 4 Ma. To date neither Late Devonian crater fill, nor impact ejecta fallout units have been identified, although metallic meteoritic ablation spherules of a similar age have been found in the Conning Basin.