33 resultados para 111201 Cancer Cell Biology
em University of Queensland eSpace - Australia
Resumo:
Aims: The objective of this study was to evaluate the accuracy, ease of use and reproducibility of chromogenic in situ hybridisation (CISH) for HER2 testing by studying its inter-laboratory concordance in five Australian pathology laboratories. Methods: The HER2 status of 49 breast cancers was determined by CISH twice in two different laboratories. Each sample had previously been tested by immunohistochemistry (IHC; 2+ and 3+ cases selected) and fluorescence in situ hybridisation ( FISH). Participating laboratories were blinded to these test results. Oestrogen receptor ( ER) status was also evaluated for each cancer. Results: High correlation was observed between FISH and CISH results. No cases showing high gene amplification by FISH were scored as non-amplified by CISH ( kappa coefficient=1). High correlation was observed between IHC and CISH, all IHC 3+ samples showing amplification by CISH. Inter-laboratory CISH concordance was also good ( kappa coefficient=0.67). Fifty-six per cent of HER2-amplified samples tested ER positive, while 42% of ER-positive cases showed HER2 gene amplification, confirming that HER2 testing should not be confined to ER-negative breast cancers. Conclusions: These findings demonstrate that CISH is a robust test to assess HER2 status in breast cancer and therefore is an important addition to the HER2 testing algorithm.
Resumo:
Over 90% of all adults human cancers are of epithelial origin comprising mainly of skin and aero-digestive tract cancers. A significant proportion of our discipline's workload consists of management of these cancers. This review article is to provide clinicians with a summary of the current research findings in invasion and metastasis of epithelial cancers and the translation of some of this information to clinical use particularly related to skin and head and neck cancers (HNSCC). Metastasis is the leading cause of death in cancer patients. Although surgical resection of isolated metastases is beneficial for some patients, the overall efficacy of surgery, chemotherapy or radiotherapy is limited. Clearly, with today's advances in surgery a majority of these primary cancers are resectable and a cure attainable if surgeons could control or inhibit metastasis.
Resumo:
Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.
Resumo:
Transporters of Ca2+ are potential drug targets and Ca2+ is a useful signal in the assessment of G-protein-coupled receptor activation. Assays involving the assessment of intracellular Ca2+ using microplate readers most often use Ca2+ indicators which do not exhibit a spectra shift on Ca2+ binding (e.g. fluo-3). Indicators that do exhibit a spectral shift upon Ca2+ binding (e.g. fura-2) offer potential advantages for the calibration of intracellular Ca2+ levels. However, experimental limitations may limit the use of ratiometric dyes in microplate readers capable of screening. In this study, we compared the assessment of intracellular Ca2+ in adherent breast cancer cells using ratiometric and nonratiometric Ca2+ indicators. Our results demonstrate that both fluo-3 and fura-2 detect ATP dose-dependent increases in intracellular Ca2+ in the MCF-7 breast cancer cell line and that some of the limitations in the use of fura-2 appear to be overcome by the use of glass bottom microplates. The calibrated intracellular Ca2+ levels derived using fura-2 are consistent with those from microscopy and cuvette-based studies. Fura-2 may be useful in microplate studies, where cell lines with different properties are compared or where screening treatments lead to differences in the number of cells or dye loading. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
There is evidence to suggest that plasma membrane Ca2+-ATPase (PMCA) isoforms are important mediators of mammary gland physiology. PMCA2 in particular is upregulated extensively during lactation. Expression of other isoforms such as PMCA4 may influence mammary gland epithelial cell proliferation and aberrant regulation of PMCA isoform expression may lead or contribute to mammary gland pathophysiology in the form of breast cancers. To explore whether PMCA2 and PMCA4 expression may be deregulated in breast cancer, we compared mRNA expression of these PMCA isoforms in tumorigenic and non-tumorigenic human breast epithelial cell lines using real time RT-PCR. PMCA2 mRNA has a higher level of expression in some breast cancer cell lines and is overexpressed more than 100-fold in ZR-75-1 cells, compared to non-tumorigenic 184135 cells. Although differences in PMCA4 mRNA levels were observed between breast cell lines, they were not of the magnitude observed for PMCA2. We conclude that PMCA2 mRNA can be highly overexpressed in some breast cancer cells. The significance of PMCA2 overexpression on tumorigenicity and its possible correlation with other properties such as invasiveness requires further study. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Background: The urokinase receptor (uPAR) is important in the process of extracellular matrix degradation occurring during cancer cell invasion and metastasis. We wished to quantify uPAR on the surfaces of normal mammary epithelial cells (HMEC) and 6 well-known breast cancer cell lines using flow cytometry. Materials and Methods: Cell surface uPAR was labelled with a monoclonal antibody, and this was detected with a florescent-labelled second antibody and accurately measured using flow cytometry. The measured fluorescent signals of the stained cells were interpolated with those of Quantum Simply Cellular bead standards to determine the number of uPAR sites per cell. Results: The breast cancer cell lines ranged from 13,700 to 50,800 uPAR sites per cell, whilst HMEC cells had only 2,500 sites. Conclusions: This simple and reliable method showed that the expression of cell surface uPAR is higher in the breast cancer cell lines than in the normal mammary cells.
Resumo:
Calcium transporters play vital roles in the transport of calcium ions across cells of the mammary gland and the intestine. One such transporter is the plasma membrane Ca2+-ATPase (PMCA), of which there are 4 different genes (PMCA1-4). In these studies we investigated the hypothesis that the expression of PMCA is altered in HT-29 colon cancer cells during sodium butyrate and post-confluence mediated differentiation. We also investigated if PMCA expression is altered in breast cancer cell lines in an isofrom specific manner. Our results indicate isoform specific changes in PMCA mRNA and protein levels in HT-29 cells during differentiation, using real time RT-PCR and western blotting, respectively. We also observed pronounced alterations in the mRNA levels of the PMCA isoform linked to lactation (PMCA2) in a bank of breast cancer cell lines compared to normal cell lines. Changes in other isoforms were less pronounced. To further study the role of specific calcium transporters we have optimised conditions for the reverse transfection of MCF-7 breast cancer cells using NeoFX (Ambion). Using real time RT-PCR we have confirmed gene knockdown for specific isoforms and have studied the time course of knockdown over 96 hours. We see approximately 68 % inhibition at 24 hours increasing to 84 % 96 hours post-reverse transfection. Our studies suggest that the expression of specific calcium transporter isoforms can be significantly altered in cancer cell lines and that isoform specific inhibition of calcium transporters is possible using reverse transfection of siRNA