43 resultados para 100300 INDUSTRIAL BIOTECHNOLOGY
em University of Queensland eSpace - Australia
Resumo:
Our AUTC Biotechnology study (Phases 1 and 2) identified a range of areas that could benefit from a common approach by universities nationally. A national network of biotechnology educators needs to be solidified through more regular communication, biennial meetings, and development of methods for sharing effective teaching practices and industry placement strategies, for example. Our aims in this proposed study are to: a. Revisit the state of undergraduate biotechnology degree programs nationally to determine their rate of change in content, growth or shrinkage in student numbers (as the biotech industry has had its ups and downs in recent years), and sustainability within their institutions in light of career movements of key personnel, tightening budgets, and governmental funding priorities. b. Explore the feasibility of a range of initiatives to benefit university biotechnology education to determine factors such as how practical each one is, how much buy-in could be gained from potentially participating universities and industry counterparts, and how sustainable such efforts are. One of many such initiatives arising in our AUTC Biotech study was a national register of industry placements for final-year students. c. During scoping and feasibility study, to involve our colleagues who are teaching in biotechnology – and contributing disciplines. Their involvement is meant to yield not only meaningful insight into how to strengthen biotechnology teaching and learning but also to generate ‘buy-in’ on any initiatives that result from this effort.
Resumo:
Stickiness behavior of skim milk powder was investigated based on the mechanical property of the material during the glass-rubber transition. A thermally controlled device was developed for the static mechanical test. This device was attached to a texture analyzer, and skim milk powder, which was used as a model sample, was tested for its glass-rubber transition temperature (Tg-r) using static compression technique (creep test). Changes in compression probe distance as a function of temperature were recorded. Tg-r was determined, in the region where changes in the probe distance were observed, by using linear regression technique. The effect of sample quantity, compression force, and heating rate on the determination of Tg-r was investigated. All these parameters significantly influenced the Tg-r determination (p < 0.05). The Tg-r of skim milk powder measured by this novel technique was found closely correlated to its glass transition temperature (T-g) measured by DSC.
Resumo:
Folates and its derivatives occur as polyglutamates in nature. The multiplicity of forms and the generally low levels in foods makes quantitative analysis of folate a difficult task. The assay of folates from foods generally involves three steps: liberation of folates from the cellular matrix; deconjugation from the polyglutamate to the mono and di-glutamate forms; and the detection of the biological activity or chemical concentration of the resulting folates. The detection methods used are the microbiological assay relying on the turbidimetric bacterial growth of Lactobacillus rhamnosus which is by far the most commonly used method; the HPLC and LC/MS techniques and bio-specific procedures. This review attempts to describe the methods along with the merits and demerits of using each of these methods.
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.
Resumo:
Poly(3-hydroxybutyrate) (PHB) production by fermentation was examined under both restricted- and ample-oxygen supply conditions in a single fed-batch fermentation. Recombinant Escherichia coli transformed with the PHB production plasmid pSYL107 was grown to reach high cell density (227 g/l dry cell weight) with a high PHB content (78% of dry cell weight), using a glucose-based minimal medium. A simple flux model containing 12 fluxes was developed and applied to the fermentation data. A superior closure (95%) of the carbon mass balance was achieved. When the data were put into use, the results demonstrated a surprisingly large excretion of formate and lactate. Even though periods of severe oxygen limitation coincided with rapid acetate and lactate excretion, PHB productivity and carbon utilization efficiency were not significantly impaired. These results are very positive in reducing oxygen demand in an industrial PHA fermentation without sacrificing its PHA productivity, thereby reducing overall production costs.
Resumo:
This paper addresses the broader unresolved issues posed by the patenting of genetic materials that are central to dealing with the tension between the patenting and competition schemes, namely distinguishing between what has already been 'discovered' and economically useful innovations (including the thresholds for novelty and non-obviousness), the exclusion of some subject matter from patenting and the restrictions on access to genetic resources to facilitate further innovation. The possible solutions of raising the threshold patenting standards, taking advantage of international intellectual property law developments and compulsory licensing are examined as ways to ameliorate the possibly detrimental consequences of current genetic material patenting practices. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Lentil is a self-pollinating diploid (2n = 14 chromosomes) annual cool season legume crop that is produced throughout the world and is highly valued as a high protein food. Several abiotic stresses are important to lentil yields world wide and include drought, heat, salt susceptibility and iron deficiency. The biotic stresses are numerous and include: susceptibility to Ascochyta blight, caused by Ascochyta lentis; Anthracnose, caused by Colletotrichum truncatum; Fusarium wilt, caused by Fusarium oxysporum; Sclerotinia white mold, caused by Sclerotinia sclerotiorum; rust, caused by Uromyces fabae; and numerous aphid transmitted viruses. Lentil is also highly susceptible to several species of Orabanche prevalent in the Mediterranean region, for which there does not appear to be much resistance in the germplasm. Plant breeders and geneticists have addressed these stresses by identifying resistant/tolerant germplasm, determining the genetics involved and the genetic map positions of the resistant genes. To this end progress has been made in mapping the lentil genome and several genetic maps are available that eventually will lead to the development of a consensus map for lentil. Marker density has been limited in the published genetic maps and there is a distinct lack of co-dominant markers that would facilitate comparisons of the available genetic maps and efficient identification of markers closely linked to genes of interest. Molecular breeding of lentil for disease resistance genes using marker assisted selection, particularly for resistance to Ascochyta blight and Anthracnose, is underway in Australia and Canada and promising results have been obtained. Comparative genomics and synteny analyses with closely related legumes promises to further advance the knowledge of the lentil genome and provide lentil breeders with additional genes and selectable markers for use in marker assisted selection. Genomic tools such as macro and micro arrays, reverse genetics and genetic transformation are emerging technologies that may eventually be available for use in lentil crop improvement.
Schumpeter and the Dynamics of Capitalism: Industrial Development, Economic Evolution and Innovation