17 resultados para 091407 Pyrometallurgy
em University of Queensland eSpace - Australia
Resumo:
The four-component Fe-Sn-Zn-O system was studied experimentally in the range of temperatures from 1100 to 1400 degrees C in air using high temperature equilibration and quenching techniques followed by electron probe X-ray microanalysis (EPMA). Phase equilibrium relations and the extent of solid solutions among the phases cassiterite (Sn,Zn)O-2, hematite (Fe,Sn,Zn)(2)O-3, spinel (Fe,Sn,Zn)(3)O-4 and zincite (Zn,Fe,Sn)O are reported. Phase equilibria in the pseudo-binary systems Fe2O3-SnO2 and SnO2-ZnO are reported in air in the temperature ranges from 1100 to 1400 degrees C and 1200 to 1400 degrees C, respectively.
Resumo:
The phase equilibria in the Fe-Mg-Zn-O system in the temperature range 1100-1550degreesC in air have been experimentally studied using equilibration and quenching followed by electron probe X-ray microanalysis. The compositions of condensed phases in equilibrium in the binary MgO-ZnO system and the ternary Fe-Mg-O system have been reported at sub-solidus in air. Pseudo-ternary sections of the quaternary Fe-Mg-Zn-O system at 1100, 1250 and 1400degreesC in air were constructed using the experimental data. The solid solution of iron oxide, MgO and ZnO in the periclase (Mg, Zn, Fe)O, spinel (Mg2+, Fe2+, Zn2+)(x)Fe(2+y)3+O4 and zincite (Zn, Mg, Fe)O phases were found to be extensive under the conditions investigated. A continuous spinel solid solution is formed between the magnesioferrite (Mg2+, Fe2+)(x)Fe(2+y)3+O4 and franklinite (Zn2+, Fe2+)(x)Fe(2+y)3+O4 end-members at 1100 and 1250degreesC, extending to magnetite (Fe2+)(x)Fe(2+y)3+O4 at 1400degreesC in air. The compositions along the spinel boundaries were found to be non-stoichiometric, the magnitude of the non-stoichiometry being a function of composition and temperature in air. It was found that hematite dissolves neither MgO nor ZnO in air.
Resumo:
The phase equilibria in the Fe-Zn-O system in the range 900-1580degreesC in air have been experimentally studied using equilibration and quenching techniques. The compositions of the phases at equilibrium were determined using electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were measured with a wet chemical analysis using the ammonium metavanadate technique. X-ray powder diffraction analysis (XRD) was used to characterise the phases. Iron oxide dissolved in zincite was found to be present principally in the ferric form. The XRD analysis and the composition measurements both indicate that zincite is the only phase stable in the ZnO-rich area in the range of conditions investigated. The solubility of the iron oxide in zincite rapidly increases at temperatures above 1200degreesC; the morphology of the zincite crystals also sharply changes between 1200 and 1300degreesC from rounded to plate-like crystals. The plate-like zincite forms a refractory network-the type of microstructure beneficial to the Imperial Smelting Process (ISP) sinter performance. The software program FactSage with a thermodynamically optimised database was used to predict phase equilibria in the Fe-Zn-O system.
Resumo:
The phase equilibria and liquidus temperatures in the binary SiO2-ZnO system and in the ternary Al2O3-SiO2-ZnO system at low Al2O3 concentrations have been experimentally determined using the equilibration and quenching technique followed by electron probe X-ray microanalysis. In the SiO2-ZnO system, two binary eutectics involving the congruently melting willemite (Zn2SiO4) were found at 1448 +/- 5 degrees C and 0.52 +/- 0.01 mole fraction ZnO and at 1502 +/- 5 degrees C and 0.71 +/- 0.01 mole fraction ZnO, respectively. The two ternary eutectics involving willemite previously reported in the Al2O3SiO2-ZnO system were found to be at 1315 +/- 5 degrees C and 1425 +/- 25 T, respectively. The compositions of the eutectics are 0.07, 0.52, and 0.41 and 0.05, 0.28, and 0.67 mole fraction Al2O3, SiO2, and ZnO, respectively. The results of the present investigation are significantly different from the results of previous studies.
Resumo:
The phase equilibria in the FeO-Fe2O3-ZnO system have been experimentally investigated at oxygen partial pressures between metallic iron saturation and air using a specially developed quenching technique, followed by electron probe X-ray microanalysis (EPMA) and then wet chemistry for determination of ferrous and ferric iron concentrations. Gas mixtures of H-2, N-2, and CO2 or CO and CO2 controlled the atmosphere in the furnace. The determined metal cation ratios in phases at equilibrium were used for the construction of the 1200 degrees C isothermal section of the Fe-Zn-O system. The univariant equilibria between the gas phase, spinel, wustite, and zincite was found to be close to pO(2) = 1 center dot 10(-8) atm at 1200 degrees C. The ferric and ferrous iron concentrations in zincite and spinel at equilibrium were also determined at temperatures from 1200 degrees C to 1400 degrees C at pO(2) = 1 center dot 10(-6) atm and at 1200 degrees C at pO(2) values ranging from 1 center dot 10(-4) to 1 center dot 10(-8) atm. Implications of the phase equilibria in the Fe-Zn-O system for the formation of the platelike zincite, especially important for the Imperial Smelting Process (ISP), are discussed.
Resumo:
Research techniques and a methodology have been developed that enable the reduction kinetics of molten lead smelting slags with solid carbon to be studied. The rates of reduction of PbO-FeO-Fe2O3-CaO-SiO2 slags with carbon have been measured for a range of slag compositions for PbO concentrations between 3 and 100 weight percent, and temperatures between 1423 and 1573 K. The reduction rates were determined for both graphite and coke. Within the range of process conditions examined, it has been shown that the reaction rates are almost independent of carbon reactivity, SiO2/CaO and SiO2/Fe ratio in the range of compositions investigated and are not influenced by the presence of sulphur in the slag.The apparent first order rate constants for oxygen removal increase with increasing PbO concentration and oxygen activity in the slag. The data indicate that the rate limiting reaction step for the reduction of lead slags with solid carbon is the chemical reaction at the gas/slag interface.
Resumo:
Zincite and spinel phases are present in the complex slag systems encountered in zinc/lead sintering and zinc smelting processes. These phases form extensive solid solutions and are stable over a wide range of compositions, temperatures and oxygen partial pressures. Accurate information on the stability of these phases is required in order to develop thermodynamic models of these slag systems. Phase equilibria in the Fe–Zn–O system have been experimentally studied for a range of conditions, between 900°C and 1580°C and oxygen partial pressures (pO2) between air and metallic iron saturation, using equilibration and quenching techniques. The compositions of the phases were measured using Electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were determined using a specially developed wet-chemical analysis procedure based on the use of ammonium metavanadate. XRD was used to confirm phase identification. A procedure was developed to overcome the problems associated with evaporation of zinc at low pO2 values and to ensure the achievement of equilibria. An isothermal section of the system FeO–Fe2O3–ZnO at high ZnO concentrations at 1200°C was constructed. The maximum solubilities of iron and zinc in zincite and spinel phases in equilibrium were determined at pO2 = 1 × 10-6 atm at 1200°C and 1300°C. The morphology of the zincite crystals sharply changes in air between 1200–1300°C from rounded to plate-like. This is shown to be associated with significant increase in total iron concentration, the additional iron being principally in the form of ferric iron. Calculations performed by FactSage with a thermodynamically optimised database have been compared with the experimental results.
Resumo:
Liquidus isotherms and phase equilibria have been determined experimentally for a pseudo-ternary section of the form MnO-(CaO+MgO)-(SiO2+Al2O3) with a fixed Al-2,O-3,/SiO2, weight ratio of 0.17 and MgO/CaO weight ratio of 0.17 for temperatures in the range 1473-1673 K. The primary phase fields present for the section investigated include manganosite (Mn,Mg,Ca)O; dicalcium silicate alpha-2(Ca,Mg,Mn)O (.) SiO2; merwinite 3CaO(.) ((Mg,Mn)O.2SiO(2); wollastonite [(Ca,Mg,Mn)(OSiO2)-Si-.]; ;tephroite [2(Mn,Mg)O.SiO2]; rhodonite [(Mn,Mg)O. diopside [(CaO,MgO,MnO,Al2O3)(SiO2)-Si-.]; tridymite (SiO2), SiO2] and melilite [2CaO (.) (MgO,MnO,Al2O3).2(SiO2,Al2O3)]. The liquidus temperatures relevant to ferro-manganese and silico-manganese smelting slags have been determined. The liquiclus temperature is shown to be principally dependent on the modified basicity weight ratio (CaO+Mgo)/(SiO2+Al2O3) at low MnO concentrations, and dependent on the mole ratio (CaO+ MgO+MnO)/(SiO2+Al2O3) at higher MnO concentrations.
Resumo:
Liquidus temperatures and phase equilibria have been determined in the olivine primary phase field of the MgO-FeO-SiO2-Al2O3 system. Liquidus isotherms have been determined in the temperature range from 1748 to 1873K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO2 with 2 and 3wt% Al2O3 in the liquid. The study enables the liquidus to be described for a range of SiO2/MgO ratios. It was found that liquidus temperatures in the olivine primary phase field decrease with the addition of Al2O3.
Resumo:
The effects of alumina and chromite impurities on the liquidus temperatures in the cristobalite/tridymite (SiO2) primary phase fields in the MgO-FeO-SiO, system in equilibrium with metallic iron have been investigated experimentally. Using high temperature equilibration and quenching followed by electron probe X-ray microanalysis (EPMA), liquiclus isotherms have been determined in the temperatures range 1 673 to 1 898 K. The results are presented in the form of pseudo-ternary sections of the MgO-FeO-SiO, system at 2, 3 and 5 wt% Al2O3, 2 wt% Cr2O3, and 2 wt% Cr2O3+2 wt% Al2O3. The study enables the liquidus to be described for a range of SiO2/MgO and MgO/FeO ratios. It was found that liquiclus temperatures in the cristobalite and tridymite primary phase fields, decrease significantly with the addition of Al2O3 and Cr2O3.
Resumo:
The rates of reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke, bituminous coal and anthracitic coal chars at temperatures in the range 1 673-1873 K have been measured using a sessile drop technique. The extents of reaction were determined using EPMA analysis of quenched samples, and on line gas analysis using a quadrupole mass spectrometer. The reaction rates have been shown to be dependent critically on carbon type. For the reaction geometry used in this investigation the reduction rates of graphite and coke are observed to be faster than with coal chars. This unexpected finding is shown to be associated with differences in the dominant chemical and mass transfer mechanisms occurring at the reaction interface. High reaction rates are observed to occur with the formation of liquid Fe-C alloy product and the associated gasification of carbon from the alloy. The rates of reduction by coal chars are determined principally by the chemical reaction at the carbon/gas interface and slag phase mass transfer.
Resumo:
The reduction of FeO from iron-saturated FeO-CaO-Al2O3-SiO2 slags by graphite, coke and coal char at 1 673 K has been investigated using a sessile drop technique. Metallographic analysis of samples quenched from the reaction temperature, and in situ observations of the reaction interface, reveal significant differences in the slag/carbon contact, and in the morphologies of the product iron and its composition; these differences were found to depend on the carbon type used in the reduction. In particular it has been shown that, in the case of graphite and coke, liquid Fe-C droplets were rapidly formed at the slag/C interface. Reactions of the slag with coal chars, in contrast, result predominantly in the formation of solid iron. These observations indicate that the reaction pathways, and hence reaction kinetics, are dependent on carbon type.
Resumo:
The microstructures of industrial ISF and synthetic sinters were examined. The principle phases present were found to consist of zincite, spinel and glass. The morphologies of the zincite phase in these complex multiphase materials were shown to relate directly to the bulk chemical compositions and thermal histories of the sinters. The conditions favouring the formation of plate-like zincite, essential for the development of refractory networks in the ISF sinters, were identified. The proportion of framework zincite present in the sinters was found to increase with increasing peak bed temperature and an increasing CaO/SiO2 ratio. The aspect ratio of the zincite increases by increasing iron in the solid solution in zincite.
Resumo:
Single phase (Zn,Fe)(1-x) O zincite solid solution samples have been prepared by high temperature equilibration in air and in reducing atmospheres, followed by quenching to room temperature. The Fe2+/Fe3+ concentrations in the samples have been determined using wet chemical and XPS techniques. Iron is found to be present in zincite predominantly in the form of Fe3+ ions. The transition from an equiaxed grain morphology to plate-like zincite crystals is shown to be associated with increasing Fe3+ concentration, increasing elongation in < 001 > of the hexagonal crystals and increasing anisotropic strain along the c-axis. The plate-like crystals are shown to contain planar defects and zincite polytypes at high iron concentrations.
Resumo:
We would like to reply to the comments made by Paparazzo on our recent paper [1] on the “effect of curve fitting parameters on quantitative analysis of Fe0.94O and Fe2O3 using XPS”. There have been many studies on the characterisation of the properties of iron oxide surfaces. The main purpose of writing the paper was to demonstrate the extent to which the selection of input parameters for curve fitting can affect the results of the quantitative analysis, and to use this analysis to develop more consistent, reproducible and quantitative methods of analysis of these data.