39 resultados para 060103 Cell Development Proliferation and Death

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutations of Kit at position D816 have been implicated in mastocytosis, acute myeloid leukaemia and germ cell tumours. Expression of this mutant Kit in cell lines results in factor-independent growth, differentiation and increased survival in vitro and tumourigenicity in vivo. Mutant D816VKit and wild-type Kit were expressed in murine primary haemopoietic cells and grown in stem cell factor (SCF) or the absence of factors. Expression of D816VKit did not lead to transformation as assessed by a colony assay, but resulted in enhanced differentiation of cells when compared to control cells. D816VKit induced an increase in the number of cells differentiating along the megakaryocyte lineage in the absence of factors. SCF had an added effect with an increase in differentiation of mast cells. Expression of wild-type Kit in the presence of SCF also failed to cause transformation and induced differentiation of mast cells and megakaryocytes. We conclude that constitutive expression of D816VKit in primary haemopoietic cells is not a sufficient transforming stimulus but leads to the survival and maturation of cells whose phenotype is influenced by the presence of SCF. (C) 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Filaggrin is a keratin filament associated protein that is expressed in granular layer keratinocytes and derived by sequential proteolysis from a polyprotein precursor termed profilaggrin. Depending on the species, each profilaggrin molecule contains between 10 and 20 filaggrin subunits organized as tandem repeats with a calcium-binding domain at the N-terminal end. We now report the characterization of the complete mouse gene. The structural organization of the mouse gene is identical to the human profilaggrin gene and consists of three exons with a 4 kb intron within the 5' noncoding region and a 1.7 kb intron separating the sequences encoding the calcium-binding EF-hand motifs. A processed pseudogene was found embedded within the second intron. The third and largest exon encodes the second EF-hand, a basic domain (designated the B-domain) followed by 12 filaggrin repeats and a unique C-terminal tail domain. A polyclonal anti-body raised against the conceptually translated sequence of the B-domain specifically stained keratohyalin granules and colocalized with a filaggrin antibody in granular layer cells. In upper granular layer cells, B-domain containing keratohyalin granules were in close apposition to the nucleus and, in some cells, appeared to be completely engulfed by the nucleus. In transition layer cells, B-domain staining was evident in the nucleus whereas filaggrin staining remained cytoplasmic. Nuclear staining of the B-domain was also observed in primary mouse keratinocytes induced to differentiate. This study has also revealed significant sequence homology between the mouse and human promoter sequences and in the calcium-binding domain but the remainder of the protein-coding region shows substantial divergence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Sonic Hedgehog (Shh) signalling pathway plays a central role in the development of the skin and hair follicle and is a major determinant of skin tumorigenesis, most notably of basal cell carcinoma (BCC). Various mouse models involving either ablation or overexpression of key members of the Shh signalling pathway display a range of skin tumours. To further examine the role of Shh in skin development. we have overexpressed Shh in a subset of interfollicular basal cells from 12.5 dpc under the control of the human keratin 1 (HK1) promoter. The HK1-Shh transgenic mice display a range of skin anomalies, including highly pigmented inguinal lesions and regions of alopecia. The most striking hair follicle phenotype is a suppression in embryonic follicle development between 14.0 and 19.0 dpc, resulting in a complete absence of guard, awl, and auchene hair fibres. These data indicate that alternative signals are responsible for the development of different hair follicles and point to a major role of Shh signalling in the morphogenesis of guard, awl, and auchene hair fibres. Through a comparison with other mouse models, the characteristics of the HK1-Shh transgenic mice suggest that the precise timing and site of Shh expression are key in dictating the resultant skin and tumour phenotype. 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The causes of schizophrenia are unknown, but there is evidence linking subtle deviations in neural development with schizophrenia. Embryonic brain development cannot be studied in an adult with schizophrenia, but neurogenesis and early events in neuronal differentiation can be investigated throughout adult life in the human olfactory epithelium. Our past research has demonstrated that neuronal cultures can be derived from biopsy of the human adult olfactory epithelium. In the present study, we examined mechanisms related to neurogenesis and neuronal differentiation in adults with schizophrenia versus well controls. Forty biopsies were collected under local anaesthesia from ten individuals with DSM III-R schizophrenia and ten age- and sex-matched well controls. All patients, except one, were receiving antipsychotic medication at the time of the biopsy, Immunostaining for neuronal markers indicated that neurogenesis occurred in the biopsies from both patients and controls since all contained cells expressing tubulin and/or olfactory marker protein. The major findings of this study are: 1. biopsies from patients with schizophrenia showed a significantly reduced ability to attach to the culture slide: 29.9% of patient biopsies attached compared to 73.5% of control biopsies; 2. biopsies from patients with schizophrenia had a significantly greater proportion of cells undergoing mitosis: 0.69% in the patients compared to 0.29% in the controls; and 3. dopamine (10 mu M) significantly increased the proportion of apoptotic cells in the control cultures but significantly decreased the proportion in patients' cultures. (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Activation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) family of receptors promotes the survival, proliferation, and differentiation of cells of the myeloid compartment. Several signaling pathways are activated downstream of the receptor, however it is not clear how these induce specific biologic outcomes. We have previously identified 2 classes of constitutively active mutants of the shared signaling subunit, human (h) betac, of the human GM-CSF/interieukin-3 (IL-3)/IL-5 receptors that exhibit different modes of signaling. In a factor-dependent bipotential myeloid cell line, FDB1, an activated mutant containing a substitution in the transmembrane domain (V449E) induces factor-independent proliferation and survival, while mutants in the extracellular domain induce factor-independent granulocyte-macrophage differentiation. Here we have used further mutational analysis to demonstrate that there are nonredundant functions for several regions of the cytoplasmic domain with regard to mediating proliferation, viability, and differentiation, which have not been revealed by previous studies with the wild-type GM-CSF receptor. This unique lack of redundancy has revealed an association of a conserved membrane-proximal region with viability signaling and a critical but distinct role for tyrosine 577 in the activities of each class of mutant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One common characteristic of breast cancers arising in carriers of the predisposition gene BRCA1 is a loss of expression of the CDK inhibitor p27(Kip1) (p27), suggesting that p27 interacts epistatically with BRCA1. To investigate this relationship, we examined expression of p27 in mice expressing a dominant negative allele of Brca1 (MMTV-trBr) in the mammary gland. While these mice rarely develop tumors, they showed a 50% increase in p27 protein and a delay in mammary gland development associated with reduced proliferation. In contrast, on a p27 heterozygote background, MMTV-trBrca1 mice showed an increase in S phase cells, and normal mammary development. p27 was the only protein in the cyclin cyclin-dependent kinase network to show altered expression, suggesting that it may be a central mediator of cell cycle arrest in response to loss of function of BRCA1. Furthermore, in human mammary epithelial MCF7 cells expressing BRCA1-specific RNAi and in the BRCA1-deficient human tumor cell line HCC1937, p27 is elevated at the mRNA level compared to cells expressing wild-type BRCA1. We hypothesize that disruption of BRCA1 induces an increase in p27 that inhibits proliferation. Accordingly, reduction in p27 expression leads to enhancement of cellular proliferation in the absence of BRCA1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: The aim of this study was to determine whether heparan sulfate proteoglycans (HSPGs) from the normal arterial wall inhibit neointimal formation after injury in vivo and smooth muscle cell (SMC) phenotype change and proliferation in vitro. Methods: Arterial HSPGs were extracted from rabbit aortae and separated by anion-exchange chromatography. The effect of HSPGs, applied in a periadventitial gel, on neointimal formation was assessed 14 days after balloon catheter injury of rabbit carotid arteries. Their effect on SMC phenotype and proliferation was measured by point-counting morphometry of the cytoplasmic volume fraction of myofilaments (Vvmyo) and H-3-thymidine incorporation in SMCs in culture. Results: Arterial HSPGs (680 mu g) reduced neointimal formation by 35% at 14 days after injury (P =.029), whereas 2000 mu g of the low-molecular-weight heparin Enoxaparin was ineffective. HSPGs at 34 mu g/mL maintained subconfluent primary cultured SMCs with the same high Vvmyo (52.1% +/- 13.8%) after 5 days in culture as did cells freshly isolated from the arterial wall (52.1% +/- 15.1%). In contrast, 100 mu g/mL Enoxaparin was ineffective in preventing phenotypic change over this time period (Vvmyo 38.9% +/- 14.6%, controls 35.9% +/- 12.8%). HSPGs also inhibited 3H-thymidine incorporation into primary cultured SMCs with an ID50 value of 0.4 mu g/mL compared with a value of 14 mu g/ml; for Enoxaparin (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Percutaneous transluminal coronary angioplasty is a frequently used interventional technique to reopen arteries that have narrowed because of atherosclerosis. Restenosis, or renarrowing of the artery shortly after angioplasty, is a major limitation to the success of the procedure and is due mainly to smooth muscle cell accumulation in the artery wall at the site of balloon injury. In the present study, we demonstrate that the antiangiogenic sulfated oligosaccharide, PI-88, inhibits primary vascular smooth muscle cell proliferation and reduces intimal thickening 14 days after balloon angioplasty of rat and rabbit arteries. PI-88 reduced heparan sulfate content in the injured artery wall and prevented change in smooth muscle phenotype. However, the mechanism of PI-88 inhibition was not merely confined to the antiheparanase activity of this compound. PI-88 blocked extracellular signal-regulated kinase-1/2 (ERK1/2) activity within minutes of smooth muscle cell injury. It facilitated FGF-2 release from uninjured smooth muscle cells in vitro, and super-released FGF-2 after injury while inhibiting ERK1/2 activation. PI-88 inhibited the decrease in levels of FGF-2 protein in the rat artery wall within 8 minutes of injury. PI-88 also blocked injury-inducible ERK phosphorylation, without altering the clotting time in these animals. Optical biosensor studies revealed that PI-88 potently inhibited (K-i 10.3 nmol/L) the interaction of FGF-2 with heparan sulfate. These findings show for the first time the capacity of this sulfated oligosaccharide to directly bind FGF-2, block cellular signaling and proliferation in vitro, and inhibit injury-induced smooth muscle cell hyperplasia in two animal models. As such, this study demonstrates a new role for PI-88 as an inhibitor of intimal thickening after balloon angioplasty. The full text of this article is available online at http://www.circresaha.org.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show here that the neurotrophin nerve growth factor (NGF), which has been shown to be a mitogen for breast cancer cells, also stimulates cell survival through a distinct signaling pathway. Breast cancer cell lines (MCF-7, T47-D, BT-20, and MDA-MB-231) were found to express both types of NGF receptors: p140(trkA) and p75(NTR). The two other tyrosine kinase receptors for neurotrophins, TrkB and TrkC, were not expressed. The mitogenic effect of NGF on breast cancer cells required the tyrosine kinase activity of p140(trkA) as well as the mitogen-activated protein kinase (MAPK) cascade, but was independent of p75(NTR). I, contrast, the anti-apoptotic effect of NGF (studied using the ceramide analogue C2) required p75(NTR) as well as the activation of the transcription factor NF-kB, but neither p140(trkA) nor MAPK was necessary. Other neurotrophins (BDNF, NT-3, NT-4/5) also induced cell survival, although not proliferation, emphasizing the importance of p75(NTR) in NGF-mediated survival. Both the pharmacological NF-KB inhibitor SN50, and cell transfection with IkBm, resulted in a diminution of NGF anti-apoptotic effect. These data show that two distinct signaling pathways are required for NGF activity and confirm the roles played by p75(NTR) and NF-kappaB in the activation of the survival pathway in breast cancer cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interrelationship between myofibroblasts and fibrogenic growth factors in the pathogenesis of renal fibrosis is poorly defined. A temporal and spatial analysis of myofibroblasts, their proliferation and death, and presence of transforming growth factor-beta1 (TGF-beta1) and platelet-derived growth factor-B (PDGF-B) was carried out in an established rodent model in which chronic renal scarring and fibrosis occurs after healed renal papillary necrosis (RPN), similar to that seen with analgesic nephropathy. Treated and control groups (N = 6 and 4, respectively) were compared at 2, 4, 8 and 12 weeks. A positive relationship was found between presence of tubulo-interstitial myofibroblasts and development of fibrosis. Apoptotic myofibroblasts were identified in the interstitium and their incidence peaked 2 weeks after treatment. Levels of interstitial cell apoptosis and fibrosis were negatively correlated over time (r = -0.57, p < 0.01 ), suggesting that as apoptosis progressively failed to limit myofibroblast numbers, fibrosis increased. In comparison with the diminishing apoptosis in the interstitium, the tubular epithelium had progressively increasing levels of apoptosis over time, indicative of developing atrophy of nephrons. TGF-beta1 protein expression had a close spatial and temporal association with fibrosis and myofibroblasts, whilst PDGF-B appeared to have a closer link with populations of other chronic inflammatory cells such as infiltrating lymphocytes. Peritubular myofibroblasts were often seen near apoptotic cells in the tubular epithelium, suggestive of a paracrine toxic effect of factor/s secreted by the myofibroblasts. In vitro , TGF-beta1 was found to be toxic to renal tubular epithelial cells. These findings suggest an interaction between myofibroblasts, their deletion by apoptosis, and the presence of the fibrogenic growth factor TGF-beta1 in renal fibrosis, whereby apoptotic deletion of myofibroblasts could act as a controlling factor in progression of fibrosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Objectives: Selection of suitable treatment for early gastric cancers, such as endoscopic mucosal resection or the major surgical option of resection of the cancer together with a radical lymph node dissection, may be assisted by comparing the growth characteristics of the cancer with selected molecular characteristics. The results could be used to predict those cases that have a higher risk of developing secondary metastases. Methods: A total of 1,196 Japanese patients with early gastric cancers (648 mucosal cancers and 548 submucosal) were included in the selection of two groups: a metastatic group made up 57 cancers with lymph node metastasis (9 mucosal, 48 submucosal), and a nonmetastatic group of 61 cases (6 mucosal, 55 submucosal) without lymph node metastasis. Growth characteristics of the cancers (superficially spreading, penetrating or invasive, lymph node metastasis) were compared with immunohistochemical expression of single-stranded DNA (ssDNA) protein (apoptosis indicator), bcl-2 and p53 (apoptosis-associated), Ki-67 (cell proliferation), and E-cadherin (cell adhesion) proteins. Results: The lesions in the nonmetastatic group had higher levels of apoptosis and lower expression of bcl-2 than in the metastatic group, indicating an inhibitory role for apoptosis in malignant progression. Apoptosis was also higher in the superficial compared with the invasive lesions of both groups. The lesions in the metastatic group had higher p53 expression than that of the nonmetastatic group, whereas apoptosis in the metastatic group was lower than in the nonmetastatic group. An unproved explanation for this finding may be that, although increased, p53 was mutated and ineffective in promoting apoptotic control of metastatic progression. E-cadherin was decreased in the invasive lesions of both groups, indicating a greater ability of these cells to lose adhesion, to invade the submucosa, and to metastasize. Cell proliferation was highest in the superficial lesions of both metastatic and nonmetastatic groups. Conclusions: Early gastric cancers with low levels of apoptosis, increased bcl-2, and high levels of p53 expression are more likely to invade and metastasize. (C) 2003 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.