57 resultados para 040400 GEOPHYSICS
em University of Queensland eSpace - Australia
Resumo:
40Ar/39Ar laser incremental heating analyses of individual grains of supergene jarosite, alunite, and cryptomelane from weathering profiles in the Dugald River area, Queensland, Australia, show a strong positive correlation between a sample’s age and its elevation. We analyzed 125 grains extracted from 35 hand specimens collected from weathering profiles at 11 sites located at 3 distinct elevations. The highest elevation profile hosts the oldest supergene minerals, whereas progressively younger samples occur at lower positions in the landscape. The highest elevation sampling sites (three sites), located on top of an elongated mesa (255 to 275 m elevation), yield ages in the 16 to 12 Ma range. Samples from an intermediate elevation site (225 to 230 m elevation) yield ages in the 6 to 4 Ma range. Samples collected at the lowest elevation sites (200 to 220 m elevation) yield ages in the 2.2 to 0.8 Ma interval. Grains of supergene alunite, jarosite, and cryptomelane analyzed from individual single hand specimens yield reproducible results, confirming the suitability of these minerals to 40Ar/39Ar geochronology. Multiple samples collected from the same site also yield reproducible results, indicating that the ages measured are true precipitation ages for the samples analyzed. Different sites, up to 3 km apart, sampled from weathering profiles at the same elevation again yield reproducible results. The consistency of results confirms that 40Ar/39Ar geochronology of supergene jarosite, alunite, and cryptomelane yields ages of formation of weathering profiles, providing a reliable numerical basis for differentiating and correlating these profiles. The age versus elevation relationship obtained suggest that the stepped landscapes in the Dugald River area record a progressive downward migration of a relatively flat weathering front. The steps in the landscape result from differential erosion of previously weathered bedrock displaying different susceptibility to weathering and contrasting resistance to erosion. Combined, the age versus elevation relationships measured yield a weathering rate of 3.8 m. Myr−1 (for the past 15 Ma) if a descending subhorizontal weathering front is assumed. The results also permit the calculation of the erosion rate of the more easily weathered and eroded lithologies, assuming an initially flat landscape as proposed in models of episodic landscape development. The average erosion rate for the past 15 Ma is 3.3 m. Myr−1, consistent with erosion rates obtained by cosmogenic isotope studies in the region.
Resumo:
Modeling volcanic phenomena is complicated by free-surfaces often supporting large rheological gradients. Analytical solutions and analogue models provide explanations for fundamental characteristics of lava flows. But more sophisticated models are needed, incorporating improved physics and rheology to capture realistic events. To advance our understanding of the flow dynamics of highly viscous lava in Peléean lava dome formation, axi-symmetrical Finite Element Method (FEM) models of generic endogenous dome growth have been developed. We use a novel technique, the level-set method, which tracks a moving interface, leaving the mesh unaltered. The model equations are formulated in an Eulerian framework. In this paper we test the quality of this technique in our numerical scheme by considering existing analytical and experimental models of lava dome growth which assume a constant Newtonian viscosity. We then compare our model against analytical solutions for real lava domes extruded on Soufrière, St. Vincent, W.I. in 1979 and Mount St. Helens, USA in October 1980 using an effective viscosity. The level-set method is found to be computationally light and robust enough to model the free-surface of a growing lava dome. Also, by modeling the extruded lava with a constant pressure head this naturally results in a drop in extrusion rate with increasing dome height, which can explain lava dome growth observables more appropriately than when using a fixed extrusion rate. From the modeling point of view, the level-set method will ultimately provide an opportunity to capture more of the physics while benefiting from the numerical robustness of regular grids.
Resumo:
Silicic volcanic eruptions are typically accompanied by repetitive Long-Period (LP) seismicity that originates from a small region of the upper conduit. These signals have the capability to advance eruption prediction, since they commonly precede a change in the eruption vigour. Shear bands forming along the conduit wall, where the shear stresses are highest, have been linked to providing the seismic trigger. However, existing computational models are unable to generate shear bands at the depths where the LP signals originate using simple magma strength models. Presented here is a model in which the magma strength is determined from a constitutive relationship dependent upon crystallinity and pressure. This results in a depth-dependent magma strength, analogous to planetary lithospheres. Hence, in shallow highly-crystalline regions a macroscopically discontinuous brittle type of deformation will prevail, whilst in deeper crystal-poor regions there will be a macroscopically continuous plastic deformation mechanism. This will result in a depth where the brittle-ductile transition occurs, and here shear bands disconnected from the free-surface may develop. We utilize the Finite Element Method and use axi-symmetric coordinates to model magma flow as a viscoplastic material, simulating quasi-static shear bands along the walls of a volcanic conduit. Model results constrained to the Soufrière Hills Volcano, Montserrat, show the generation of two types of shear bands: upper-conduit shear bands that form between the free-surface to a few 100 metres below it and discrete shear bands that form at the depths where LP seismicity is measured to occur corresponding to the brittle-ductile transition and the plastic shear region. It is beyond the limitation of the model to simulate a seismic event, although the modelled viscosity within the discrete shear bands suggests a failure and healing cycle time that supports the observed LP seismicity repeat times. However, due to the paucity of data and large parameter space available these results can only be considered to be qualitative rather than quantitative at this stage.
Resumo:
A theoretical analysis is carried out to investigate the pore-fluid pressure gradient and effective vertical-stress gradient distribution in fluid saturated porous rock masses in layered hydrodynamic systems. Three important concepts, namely the critical porosity of a porous medium, the intrinsic Fore-fluid pressure and the intrinsic effective vertical stress of the solid matrix, are presented and discussed. Using some basic scientific principles, we derive analytical solutions and explore the conditions under which either the intrinsic pore-fluid pressure gradient or the intrinsic effective vertical-stress gradient can be maintained at the value of the lithostatic pressure gradient. Even though the intrinsic pore-fluid pressure gradient can be maintained at the value of the lithostatic pressure gradient in a single layer, it is impossible to maintain it at this value in all layers in a layered hydrodynamic system, unless all layers have the same permeability and porosity simultaneously. However, the intrinsic effective vertical-stress gradient of the solid matrix can be maintained at a value close to the lithostatic pressure gradient in all layers in any layered hydrodynamic system within the scope of this study.
Resumo:
We report the detection of living colonies of nano-organisms (nanobes) on Triassic and Jurassic sandstones and other substrates. Nanobes have cellular structures that are strikingly similar in morphology to Actinomycetes and fungi (spores, filaments, and fruiting bodies) with the exception that they are up to 10 times smaller in diameter (20 nm to 1.0 mu m). Nanobes are noncrystalline structures that are composed of C, O, and N. Ultra thin sections of nanobes show the existence of an outer layer or membrane that may represent a cell wall. This outer layer surrounds an electron dense region interpreted to be the cytoplasm and a less electron dense central region that may represent a nuclear area. Nanobes show a positive reaction to three DNA stains, [4',6-diamidino-2 phenylindole (DAPI), Acridine Orange, and Feulgen], which strongly suggests that nanobes contain DNA. Nanobes are communicable and grow in aerobic conditions at atmospheric pressure and ambient temperatures. While morphologically distinct, nanobes are in the same size range as the controversial fossil nannobacteria described by others in various rock types and in the Martian meteorite ALH84001.
Resumo:
Open system pyrolysis (heating rate 10 degrees C/min) of coal maturity (vitrinite reflectance, VR) sequence (0.5%, 0.8% and 1.4% VR) demonstrates that there are two stages of thermogenic methane generation from Bowen Basin coals. The first and major stage shows a steady increase in methane generation maximising at 570 degrees C, corresponding to a VR of 2-2.5%. This is followed by a less intense methane generation which has not as yet maximised by 800 degrees C (equivalent to VR of 5%). Heavier (C2+) hydrocarbons are generated up to 570 degrees C after which only the C-1 (CH4, CO and CO2) gases are produced. The main phase of heavy hydrocarbon generation occurs between 420 and 510 degrees C. Over this temperature range,methane generation accounts for only a minor component, whereas the wet gases (C-2-C-5) are either in equal abundance or are more abundant by a factor of two than the liquid hydrocarbons. The yields of non-hydrocarbon gases CO2 and CO are greater then methane during the early stages of gas generation from an immature coal, subordinate to methane during the main phase of methane generation after which they are again dominant. Compositional data for desorbed and produced coal seam gases from the Bowen show that CO2 and wet gases are a minor component. This discrepancy between the proportion of wet gas components produced during open system pyrolysis and that observed in naturally matured coals may be the result of preferential migration of wet gas components, by dilution of methane generated during secondary cracking of bitumen, or kinetic effects associated with different activations for production of individual hydrocarbon gases. Extrapolation of results of artificial pyrolysis of the main organic components in coal to geological significant heating rates suggests that isotopically light methane to delta(13)C of -50 parts per thousand can be generated. Carbon isotope depletions in C-13 are further enhanced, however, as a result of trapping of gases over selected rank levels (instantaneous generation) which is a probable explanation for the range of delta(13)C values we have recorded in methane desorbed from Bowen Basin coals (-51 +/- 9 parts per thousand). Pervasive carbonate-rich veins in Bowen Basin coals are the product of magmatism-related hydrothermal activity. Furthermore, the pyrolysis results suggest an additional organic carbon source front CO2 released at any stage during the maturation history could mix in varying proportions with CO2 from the other sources. This interpretation is supported by C and O isotopic ratios, of carbonates that indicate mixing between magmatic and meteoric fluids. Also, the steep slope of the C and O isotope correlation trend suggests that the carbonates were deposited over a very narrow temperature interval basin-wide, or at relatively high temperatures (i.e., greater than 150 degrees C) where mineral-fluid oxygen isotope fractionations are small. These temperatures are high enough for catagenic production of methane and higher hydrocarbons from the coal and coal-derived bitumen. The results suggests that a combination of thermogenic generation of methane and thermodynamic processes associated with CH4/CO2 equilibria are the two most important factors that control the primary isotope and molecular composition of coal seam gases in the Bowen Basin. Biological process are regionally subordinate but may be locally significant. (C) 1998 Published by Elsevier Science Ltd. All rights reserved.
Resumo:
We use theoretical and numerical methods to investigate the general pore-fluid flow patterns near geological lenses in hydrodynamic and hydrothermal systems respectively. Analytical solutions have been rigorously derived for the pore-fluid velocity, stream function and excess pore-fluid pressure near a circular lens in a hydrodynamic system. These analytical solutions provide not only a better understanding of the physics behind the problem, but also a valuable benchmark solution for validating any numerical method. Since a geological lens is surrounded by a medium of large extent in nature and the finite element method is efficient at modelling only media of finite size, the determination of the size of the computational domain of a finite element model, which is often overlooked by numerical analysts, is very important in order to ensure both the efficiency of the method and the accuracy of the numerical solution obtained. To highlight this issue, we use the derived analytical solutions to deduce a rigorous mathematical formula for designing the computational domain size of a finite element model. The proposed mathematical formula has indicated that, no matter how fine the mesh or how high the order of elements, the desired accuracy of a finite element solution for pore-fluid flow near a geological lens cannot be achieved unless the size of the finite element model is determined appropriately. Once the finite element computational model has been appropriately designed and validated in a hydrodynamic system, it is used to examine general pore-fluid flow patterns near geological lenses in hydrothermal systems. Some interesting conclusions on the behaviour of geological lenses in hydrodynamic and hydrothermal systems have been reached through the analytical and numerical analyses carried out in this paper.
Resumo:
Fine-grained pyrite is the earliest generation of pyrite and the most abundant sulfide within the Urquhart Shale at Mount Isa, northwest Queensland. The pyrite is intimately interbanded with ore-grade Pb-Zn miner alization at the Mount Isa mine but is also abundant north and south of the mine at several stratigraphic horizons within the Urquhart Shale. Detailed sedimentologic, petrographic, and sulfur isotope studies of the Urquhart Shale, mostly north of the mine, reveal that the fine-grained pyrite (delta(34)S = -3.3 to +26.3 parts per thousand) formed by thermochemical sulfate reduction during diagenesis. The sulfate source was local sulfate evaporites, pseudo morphs of which are present throughout the Urquhart Shale (i.e., gypsum, anhydrite, and barite). Deep-burial diagenetic replacement of these evaporites resulted in sulfate-bearing ground waters which migrated parallel to bedding. Fine-grained pyrite formed where these fluids infiltrated and then interacted with carbon-rich laminated siltstones. Comparison of the sulfur isotope systematics of fine-grained pyrite and spatially associated base metal sulfides from the Mount Isa Pb-Zn and Cu orebodies indicates a common sulfur source of ultimately marine origin for all sulfide types. Different sulfur isotope ratio distributions for the various sulfides are the result of contrasting formation mechanisms and/or depositional conditions rather than differing sulfur sources. The sulfur isotope systematics of the base metal and associated iron sulfide generations are consistent with mineralization by reduced hydrothermal fluids, perhaps generated by bulk reduction of evaporite-sourced sulfate-bearing waters generated deeper in the Mount Isa Group, the sedimentary sequence which contains the Urquhart Shale. The available sulfur isotope data from the Mount Isa orebodies are consistent with either a chemically and thermally zoned, evolving Cu-Pb-Zn system, or discrete Cu and Pb-Zn mineralizing events linked by a common sulfur source.
Resumo:
This field study was a combined chemical and biological investigation of the relative effects of using dispersants to treat oil spills impacting mangrove habitats. The aim of the chemistry was to determine whether dispersant affected the short- or long-term composition of a medium range crude oil (Gippsland) stranded in a tropical mangrove environment in Queensland, Australia. Sediment cores from three replicate plots of each treatment (oil only and oil plus dispersant) were analyzed for total hydrocarbons and for individual molecular markers (alkanes, aromatics, triterpanes, and steranes). Sediments were collected at 2 days, then 1, 7, 13 and 22 months post-spill. Over this time, oil in the six treated plots decreased exponentially from 36.6 +/- 16.5 to 1.2 +/- 0.8 mg/g dry wt. There was no statistical difference in initial oil concentrations, penetration of oil to depth, or in the rates of oil dissipation between oiled or dispersed oil plots. At 13 months, alkanes were >50% degraded, aromatics were similar to 30% degraded based upon ratios of labile to resistant markers. However, there was no change in the triterpane or sterane biomarker signatures of the retained oil. This is of general forensic interest for pollution events. The predominant removal processes were evaporation (less than or equal to 27%) and dissolution (greater than or equal to 56%), with a lag-phase of 1 month before the start of significant microbial degradation (less than or equal to 7%). The most resistant fraction of the oil that remained after 7 months (the higher molecular weight hydrocarbons) correlated with the initial total organic carbon content of the soil. Removal rate in the Queensland mangroves was significantly faster than that observed in the Caribbean and was related to tidal flushing. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
A hybrid formulation for coupled pore fluid-solid deformation problems is proposed. The scheme is a hybrid in the sense that we use a vertex centered finite volume formulation for the analysis of the pore fluid and a particle method for the solid in our model. The pore fluid formally occupies the same space as the solid particles. The size of the particles is not necessarily equal to the physical size of materials. A finite volume mesh for the pore fluid flow is generated by Delaunay triangulation. Each triangle possesses an initial porosity. Changes of the porosity are specified by the translations of the mass centers of particles. Net pore pressure gradients are applied to the particle centers and are considered in the particle momentum balance. The potential of our model is illustrated by means of a simulation of coupled fracture and fluid flow developed in porous rock under biaxial compression condition.
Resumo:
We investigate the internal dynamics of two cellular automaton models with heterogeneous strength fields and differing nearest neighbour laws. One model is a crack-like automaton, transferring ail stress from a rupture zone to the surroundings. The other automaton is a partial stress drop automaton, transferring only a fraction of the stress within a rupture zone to the surroundings. To study evolution of stress, the mean spectral density. f(k(r)) of a stress deficit held is: examined prior to, and immediately following ruptures in both models. Both models display a power-law relationship between f(k(r)) and spatial wavenumber (k(r)) of the form f(k(r)) similar tok(r)(-beta). In the crack model, the evolution of stress deficit is consistent with cyclic approach to, and retreat from a critical state in which large events occur. The approach to criticality is driven by tectonic loading. Short-range stress transfer in the model does not affect the approach to criticality of broad regions in the model. The evolution of stress deficit in the partial stress drop model is consistent with small fluctuations about a mean state of high stress, behaviour indicative of a self-organised critical system. Despite statistics similar to natural earthquakes these simplified models lack a physical basis. physically motivated models of earthquakes also display dynamical complexity similar to that of a critical point system. Studies of dynamical complexity in physical models of earthquakes may lead to advancement towards a physical theory for earthquakes.
Resumo:
The evolution of event time and size statistics in two heterogeneous cellular automaton models of earthquake behavior are studied and compared to the evolution of these quantities during observed periods of accelerating seismic energy release Drier to large earthquakes. The two automata have different nearest neighbor laws, one of which produces self-organized critical (SOC) behavior (PSD model) and the other which produces quasi-periodic large events (crack model). In the PSD model periods of accelerating energy release before large events are rare. In the crack model, many large events are preceded by periods of accelerating energy release. When compared to randomized event catalogs, accelerating energy release before large events occurs more often than random in the crack model but less often than random in the PSD model; it is easier to tell the crack and PSD model results apart from each other than to tell either model apart from a random catalog. The evolution of event sizes during the accelerating energy release sequences in all models is compared to that of observed sequences. The accelerating energy release sequences in the crack model consist of an increase in the rate of events of all sizes, consistent with observations from a small number of natural cases, however inconsistent with a larger number of cases in which there is an increase in the rate of only moderate-sized events. On average, no increase in the rate of events of any size is seen before large events in the PSD model.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We analyze folding phenomena in finely layered viscoelastic rock. Fine is meant in the sense that the thickness of each layer is considerably smaller than characteristic structural dimensions. For this purpose we derive constitutive relations and apply a computational simulation scheme (a finite-element based particle advection scheme; see MORESI et al., 2001) suitable for problems involving very large deformations of layered viscous and viscoelastic rocks. An algorithm for the time integration of the governing equations as well as details of the finite-element implementation is also given. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered plate. The domain is compressed along the layer axis by prescribing velocities along the sides. First, for the viscous limit we consider the response to a series of harmonic perturbations of the director orientation. The Fourier spectra of the initial folding velocity are compared for different viscosity ratios. Turning to the nonlinear regime we analyze viscoelastic folding histories up to 40% shortening. The effect of layering manifests itself in that appreciable buckling instabilities are obtained at much lower viscosity ratios (1:10) as is required for the buckling of isotropic plates (1:500). The wavelength induced by the initial harmonic perturbation of the director orientation seems to be persistent. In the section of the parameter space considered here elasticity seems to delay or inhibit the occurrence of a second, larger wavelength. Finally, in a linear instability analysis we undertake a brief excursion into the potential role of couple stresses on the folding process. The linear instability analysis also provides insight into the expected modes of deformation at the onset of instability, and the different regimes of behavior one might expect to observe.