14 resultados para 030404 Cheminformatics and Quantitative Structure-Activity Relationships

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acetohydroxyacid synthase (AHAS; EC 2.2.1.6) catalyzes the first common step in branched-chain amino acid biosynthesis. The enzyme is inhibited by several chemical classes of compounds and this inhibition is the basis of action of the sulfonylurea and imidazolinone herbicides. The commercial sulfonylureas contain a pyrimidine or a triazine ring that is substituted at both meta positions, thus obeying the initial rules proposed by Levitt. Here we assess the activity of 69 monosubstituted sulfonylurea analogs and related compounds as inhibitors of pure recombinant Arabidopsis thaliana AHAS and show that disubstitution is not absolutely essential as exemplified by our novel herbicide, monosulfuron (2-nitro-N-(4'-methyl-pyrimidin-2'-yl) phenyl-sulfonylurea), which has a pyrimidine ring with a single meta substituent. A subset of these compounds was tested for herbicidal activity and it was shown that their effect in vivo correlates well with their potency in vitro as AHAS inhibitors. Three-dimensional quantitative structure-activity relationships were developed using comparative molecular field analysis and comparative molecular similarity indices analysis. For the latter, the best result was obtained when steric, electrostatic, hydrophobic and H-bond acceptor factors were taken into consideration. The resulting fields were mapped on to the published crystal structure of the yeast enzyme and it was shown that the steric and hydrophobic fields are in good agreement with sulfonylurea-AHAS interaction geometry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solution structure of one of the first members of the cyclotide family of macrocyclic peptides to be discovered, circulin B has been determined and compared with that of circulin A and related cyclotides. Cyclotides are mini-proteins derived from plants that have the characteristic features of a head-to-tail cyclised peptide backbone and a knotted arrangement of their three disulfide bonds. First discovered because of their uterotonic or anti-HIV activity, they have also been reported to have activity against a range of Gram positive and Gram negative bacteria as well as fungi. The aim of the current study was to develop structure-activity relationships to rationalise this antimicrobial activity. Comparison of cyclotide structures and activities suggests that the presence and location of cationic residues may be a requirement for activity against Gram negative bacteria. Understanding the topological differences associated with the antimicrobial activity of the cyclotides is of significant interest and potentially may be harnessed for pharmaceutical applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a newly established sequencing strategy featured by its efficiency, simplicity, and easy manipulation, the sequences of four novel cyclotides (macrocyclic knotted proteins) isolated from an Australian plant Viola hederaceae were determined. The three-dimensional solution structure of V. hederaceae leaf cyclotide-1 ( vhl-1), a leaf-specific expressed 31-residue cyclotide, has been determined using two-dimensional H-1 NMR spectroscopy. vhl-1 adopts a compact and well defined structure including a distorted triple-stranded β- sheet, a short 310 helical segment and several turns. It is stabilized by three disulfide bonds, which, together with backbone segments, form a cyclic cystine knot motif. The three-disulfide bonds are almost completely buried into the protein core, and the six cysteines contribute only 3.8% to the molecular surface. A pH titration experiment revealed that the folding of vhl-1 shows little pH dependence and allowed the pK(a) of 3.0 for Glu(3) and ∼ 5.0 for Glu(14) to be determined. Met(7) was found to be oxidized in the native form, consistent with the fact that its side chain protrudes into the solvent, occupying 7.5% of the molecular surface. vhl-1 shows anti-HIV activity with an EC50 value of 0.87 μ m.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Single phase (Zn,Fe)(1-x) O zincite solid solution samples have been prepared by high temperature equilibration in air and in reducing atmospheres, followed by quenching to room temperature. The Fe2+/Fe3+ concentrations in the samples have been determined using wet chemical and XPS techniques. Iron is found to be present in zincite predominantly in the form of Fe3+ ions. The transition from an equiaxed grain morphology to plate-like zincite crystals is shown to be associated with increasing Fe3+ concentration, increasing elongation in < 001 > of the hexagonal crystals and increasing anisotropic strain along the c-axis. The plate-like crystals are shown to contain planar defects and zincite polytypes at high iron concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few reported inhibitors of secretory phospholipase A(2) enzymes inhibit the IIa human isoform (hnpsPLA(2)-IIa) noncovalently at submicromolar concentrations. Herein, the simple chiral precursor D-tyrosine was derivastised to give a series of potent new inhibitors of hnpsPLA(2)-IIa. A 2.2-Angstrom crystal structure shows an inhibitor bound in the active site of the enzyme, chelated to a Ca2+ ion through carboxylate and amide oxygen atoms, H bonded through an amide NH group to His48, with multiple hydrophobic contacts and a T-shaped aromatic-group-His6 interaction. Antiinflammatory activity is also demonstrated for two compounds administered orally to rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of small quantities (similar to 5 wt pct) layered silicates into polymer materials has the potential to greatly increase the modulus without adversely affecting the toughness or processability of the composite. The effect of microstructural features in the polymer nanocomposite and their possible effects on the mechanical properties with particular reference to linear low density polyethylene (LLDPE)/montmorillonite nanocomposites was discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly selective N-type voltage-gated calcium (Ca-V) channel inhibitors from cone snail venom (the omega-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt ( Elan) or synthetic omega-conotoxin MVIIA, was the first omega-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three omega-conotoxins, GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved N-type therapeutics that are more useful in the treatment of chronic pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.