7 resultados para 02100115 CTD-29
em University of Queensland eSpace - Australia
Resumo:
Partially solid commercial Al-Si and Mg-Al alloys have been deformed in shear during solidification using vane rheometry. The dendritic mush was deformed for a short period at 29% solid and allowed to cool naturally after deformation. Both alloys exhibited yield point behaviour and deformation was highly localised at the surface of maximum shear stress. The short period of deformation was found to have a distinct impact on the as-cast microstructure leading to fragmented dendrites in the deformation region of both alloys. In the case of the Mg-Al alloy, a concentrated region of interdendritic porosity was also observed in the deformation region. Concentrated porosity was not observed in the Al-Si alloy. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A comprehensive study was conducted on mesoporous MCM-41. Spectroscopic examinations demonstrated that three types of silanol groups, i.e., single, (SiO)(3)Si-OH, hydrogen-bonded, (SiO)(3)Si-OH-OH-Si(SiO)(3), and geminal, (SiO)(2)Si(OH)(2), can be observed. The number of silanol groups/nm(2), alpha(OH), as determined by NMR, varies between 2.5 and 3.0 depending on the template-removal methods. All these silanol groups were found to be the active sites for adsorption of pyridine with desorption energies of 91.4 and 52.2 kJ mol(-1), respectively. However, only free silanol groups (involving single and geminal silanols) are highly accessible to the silylating agent, chlorotrimethylsilane. Silylation can modify both the physical and chemical properties of MCM-41.
Resumo:
Many nonsteroidal anti-inflammatory drugs (NSAIDs) which have antiproliferative activity in colon cancer cells are carboxylate compounds forming acyl glucuronide metabolites. Acyl glucuronides are potentially reactive, able to hydrolyse, rearrange into isomers, and covalently modify proteins under physiological conditions. This study investigated whether the acyl glucuronides (and isomers) of the carboxylate NSAIDs diflunisal, zomepirac and diclofenac had antiproliferative activity on human adenocarcinoma. HT-29 cells in culture. Included as controls were the carboxylate NSAIDs themselves, the non-carboxylate NSAID piroxicam, and the carboxylate non-NSAID valproate, as well as its acyl glucuronide and isomers. The compounds were incubated at 1-3000 muM with HT-29 cells for 24 hr, with [H-3]-thymidine added for an additional 2 hr incubation. IC50 values were calculated from the concentration-inhibition response curves for thymidine uptake. The four NSAIDs inhibited thymidine uptake, with IC50 values about 200-500 muM. All of the NSAID acyl glucuronides (and isomers, tested in the case of diflunisal) showed antiproliferative activity broadly comparable to the parent drugs. This activity may stem from direct uptake of intact glucuronide/isomers followed by covalent modification of proteins critical in the cell replication process. However, hydrolysis during incubation and cellular uptake of liberated parent NSAID will play a role. In HT-29 cells incubated with zomepirac, covalently modified proteins in cytosol were detected by immunoblotting with a zomepirac antibody, suggesting that HT-29 cells do have the capacity to glucuronidate zomepirac. The anti-epileptic drug valproate had no effect on inhibition of thymidine uptake, though, surprisingly, its acyl glucuronide and isomers were active. The reasons for this are unclear at present. (C) 2001 Elsevier Science Inc. All rights reserved.
Resumo:
The 101 residue protein early pregnancy factor (EPF), also known as human chaperonin 10, was synthesized from four functionalized, but unprotected, peptide segments by a sequential thioether ligation strategy. The approach exploits the differential reactivity of a peptide-NHCH2CH2SH thiolate with XCH2CO-peptides, where X = Cl or I/Br. Initial model studies with short functionalized (but unprotected) peptides showed a significantly faster reaction of a peptide-NHCH2CH2SH thiolate with a BrCH2CO-peptide than with a CICH2CO-peptide, where thiolate displacement of the halide leads to chemoselective formation of a thioether surrogate for the Gly-Gly peptide bond. This rate difference was used as the basis of a novel sequential ligation approach to the synthesis of large polypeptide chains. Thus, ligation of a model bifunctional N-alpha-chloroacetyl, C-terminal thiolated peptide with a second N-alpha-bromoacetyl peptide demonstrated chemoselective bromide displacement by the thiol group. Further investigations showed that the relatively unreactive N-alpha-chloroacetyl peptides could be activated by halide exchange using saturated KI solutions to yield the highly reactive No-iodoacetyl peptides. These findings were used to formulate a sequential thioether ligation strategy for the synthesis of EPF, a 101 amino acid protein containing three Gly-Gly sites approximately equidistantly spaced within the peptide chain. Four peptide segments or cassettes comprising the EPF protein sequence (BrAc-[EPF 78-101] 12, ClAc-[EPF 58-75]-[NHCH2CH2SH] 13, ClAc-[EPF 30-55]-[NHCH2CH2SH] 14, and Ac-[EPF 1-27]-[NHCH2CH2SH] 15) of EPF were synthesized in high yield and purity using Boc SPPS chemistry. In the stepwise sequential ligation strategy, reaction of peptides 12 and 13 was followed by conversion of the N-terminal chloroacetyl functional group to an iodoacetyl, thus activating the product peptide for further ligation with peptide 14. The process of ligation followed by iodoacetyl activation was repeated to yield an analogue of EPF (EPF psi(CH2S)(28-29,56-57,76-77)) 19 in 19% overall yield.