26 resultados para [JEL:Q30] Agricultural and Natural Resource Economics
em University of Queensland eSpace - Australia
Resumo:
Mycorthizae play a critical role in nutrient capture from soils. Arbuscular mycorrhizae (AM) and ectomycorrhizae (EM) are the most important mycorrhizae in agricultural and natural ecosystems. AM and EM fungi use inorganic NH4+ and NO3-, and most EM fungi are capable of using organic nitrogen. The heavier stable isotope N-15 is discriminated against during biogeochemical and biochemical processes. Differences in N-15 (atom%) or delta(15)N (parts per thousand) provide nitrogen movement information in an experimental system. A range of 20 to 50% of one-way N-transfer has been observed from legumes to nonlegumes. Mycorrhizal fungal mycelia can extend from one plant's roots to another plant's roots to form common mycorrhizal networks (CMNs). Individual species, genera, even families of plants can be interconnected by CMNs. They are capable of facilitating nutrient uptake and flux. Nutrients such as carbon, nitrogen and phosphorus and other elements may then move via either AM or EM networks from plant to plant. Both N-15 labeling and N-15 natural abundance techniques have been employed to trace N movement between plants interconnected by AM or EM networks. Fine mesh (25similar to45 mum) has been used to separate root systems and allow only hyphal penetration and linkages but no root contact between plants. In many studies, nitrogen from N-2-fixing mycorrhizal plants transferred to non-N-2-fixing mycorrhizal plants (one-way N-transfer). In a few studies, N is also transferred from non-N-2-fixing mycorrhizal plants to N-2-fixing mycorrhizal plants (two-way N-transfer). There is controversy about whether N-transfer is direct through CMNs, or indirect through the soil. The lack of convincing data underlines the need for creative, careful experimental manipulations. Nitrogen is crucial to productivity in most terrestrial ecosystems, and there are potential benefits of management in soil-plant systems to enhance N-transfer. Thus, two-way N-transfer warrants further investigation with many species and under field conditions.
Resumo:
Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo.