22 resultados para , non-structural components
em University of Queensland eSpace - Australia
Resumo:
A technique to standardise the analysis of cellular and non-cellular components in epithelial lining fluid (ELF) collected during saline lavage of pulmonary and pleural cavities was developed using the urea dilution method. Bronchoalveolar lavage (BAL) and pleural lavage (PL) fluids were collected from 12 clinically healthy cats. Total and differential cell counts in BAL fluid were within normal ranges for the cat, while cell Counts in PL fluid were assumed to be normal based on clinical health during examination, auscultation and lactate dehydrogenase (LDH) activities being comparable with other species. The major clinical implication of this study was that nucleated cell counts within feline ELF could not be predicted from analysis of lavage fluid which suggests that calculation of the proportion of ELF in lavage fluid by the urea dilution method may be necessary to avoid misdiagnosis of health or disease in pulmonary or pleural cavities. (C) 2005 ESFM and AAFP. Published by Elsevier Ltd. All rights reserved.
Resumo:
Small molecules designed to mimic specific structural components of a protein (peptide strands, sheets, turns, helices, or amino acids) can be expected to display agonist or antagonist biological responses by virtue of interacting with the same receptors that recognize the protein. Here we describe some minimalist approaches to structural mimetics of amino acids and of strand, turn, or helix segments of proteins. The designed molecules show potent and selective inhibition of protease, transferase, and phospholipase enzymes, or antagonism of G-protein coupled or transcriptional receptors, and have potent anti-tumour, anti-inflammatory, or antiviral activity.
Resumo:
AIM: To develop a technique to estimate the volume of epithelial lining fluid (ELF) obtained during bronchoalveolar lavage (BAL) and pleural lavage (PL) in the dog, using the urea dilution method. METHODS: BAL and PL fluids were obtained by saline lavage of pulmonary and pleural cavities of nine clinically healthy mixed-breed dogs immediately after euthanasia. Cell counts in the BAL and PL fluids were measured using standard techniques. The concentration of ELF in each lavage fluid was calculated from the relative concentration of urea in plasma and in each type of lavage fluid. Cell counts in ELF were then calculated. RESULTS: There were substantially higher cell counts in ELF compared to BAL or PF fluid. However, nucleated cell counts in ELF could not be predicted from cell counts in BAL or PL fluid. CONCLUSIONS AND CLINICAL RELEVANCE: These results suggest that accurate assessment of cellular or non-cellular components in lavage fluids should include a calculation of the proportion of ELF recovered, using a method such as urea dilution.
Resumo:
Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. We previously reported* that 5-15 residue peptides, corresponding to the Zn-binding domain of thermolysin, react with [Pd(en)(ONO,),]in DMF-d’ and 90% H,O 10% DzO to form a 22-membered [Pd(en)(H*ELTH*)]2+ macrocycle that is helical in solution and acts as a template in nucleating helicity in both Cand N- terminal directions within the longer sequences in DMF. ~f~~&g7$$& d&qx~m ~. y AC&q& In water, however, there was less a-helicity observed, testifying to #..q,& &$--Lb &l-- &.$;,J~p?:~~q&~+~~ ’ w w the difficulty of fixing intramolecular amide NH...OC H-bonds in 6,“;;” ( k.$ U”C.a , p d$. competition with the H-bond donor solvent water. To expand the utility of [Pd(en)(H*XXXH*)]*+ as a helix- @r4”8 & oJ#:& &G& @-qd ,‘d@-gyp promoting module in solution, we now report the result that Ac- ‘$4: %$yyy + H*ELTH*H*VTDH*-NH,(l), AC-H*ELTH*AVTDYH*ELTH*- NH, (2) and AC-H*AAAH*H*ELTH*H*VTDH*-NH* (3) react with multiple equivalents of [Pd(en)(ONO,),] to produce exclusively 4-6 respectively in both DMF-d7 and water (90% Hz0 10% D,O). Mass spectrometry, 15N- and 2D ‘H- NMR spectroscopy, and CD spectra were used to characterise the structures 4-6, and their three dimensional structures were calculated from NOE restraints using simulated annealing protocols. Results demonstrate (a) selective coordination of metal ions at (i, i+4) histidine positions in water and DMF, (b) incorporation of 2 and 3 a turn-mimicking modules [Pd(en)(HELTH)]2+ in lo-15 residue peptides, and (c) facile conversion of unstructured peptides into 3- and 4- turn helices of macrocycles, with well defined a-helicity throughout and more structure in DMF than in water.
Resumo:
This paper investigates the nonlinear vibration of imperfect shear deformable laminated rectangular plates comprising a homogeneous substrate and two layers of functionally graded materials (FGMs). A theoretical formulation based on Reddy's higher-order shear deformation plate theory is presented in terms of deflection, mid-plane rotations, and the stress function. A semi-analytical method, which makes use of the one-dimensional differential quadrature method, the Galerkin technique, and an iteration process, is used to obtain the vibration frequencies for plates with various boundary conditions. Material properties are assumed to be temperature-dependent. Special attention is given to the effects of sine type imperfection, localized imperfection, and global imperfection on linear and nonlinear vibration behavior. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with graded silicon nitride/stainless steel layers. It is shown that the vibration frequencies are very much dependent on the vibration amplitude and the imperfection mode and its magnitude. While most of the imperfect laminated plates show the well-known hard-spring vibration, those with free edges can display soft-spring vibration behavior at certain imperfection levels. The influences of material composition, temperature-dependence of material properties and side-to-thickness ratio are also discussed. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
All single-stranded 'positive-sense' RNA viruses that infect mammalian, insect or plant cells rearrange internal cellular membranes to provide an environment facilitating virus replication. A striking feature of these unique membrane structures is the induction of 70-100 nm vesicles (either free within the cytoplasm, associated with other induced vesicles or bound within a surrounding membrane) harbouring the viral replication complex (RC). Although similar in appearance, the cellular composition of these vesicles appears to vary for different viruses, implying different organelle origins for the intracellular sites of viral RNA replication. Genetic analysis has revealed that induction of these membrane structures can be attributed to a particular viral gene product, usually a non-structural protein. This review will highlight our current knowledge of the formation and composition of virus RCs and describe some of the similarities and differences in RNA-membrane interactions observed between the virus families Flaviviridae and Picornaviridae.
Resumo:
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within- family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components.
Resumo:
The relationship of body condition score ( BCS) and blood urea and ammonia to pregnancy outcome was examined in Italian Mediterranean Buffalo cows mated by AI. The study was conducted on 150 buffaloes at 145 +/- 83 days in milk that were fed a diet comprising 14.8% crude protein, 0.9 milk forage units . kg(-1) dry matter and a non- structural carbohydrate/ crude protein ratio of 2.14. The stage of the oestrous cycle was synchronised by the Ovsynch- TAI programme and blood urea and ammonia levels were assessed on the day of AI. Energy corrected milk ( ECM) production and BCS were recorded bi- weekly. The pregnancy risk was 46.7% and was slightly lower in buffaloes with BCS < 6.0 and BCS > 7.5. There were no significant differences in ECM, urea and ammonia between pregnant and non- pregnant buffaloes. However, pregnancy outcome was higher ( P = 0.02) in buffaloes with blood urea < 6.83 mmol . L-1. The likelihood of pregnancy for buffaloes with low urea blood level was 2.6 greater than for high urea level and exposure to a high urea level lowered the probability of pregnancy by about 0.25. The findings indicate that buffaloes are similar to cattle and increased blood levels of urea are associated with reduced fertility when animals are mated by AI.