4 resultados para % area of radiolarian-related porosity
em University of Queensland eSpace - Australia
Resumo:
Hydrocephalus is a condition commonly encountered in paediatric and adult neurosurgery and cerebrospinal fluid (CSF) shunting remains the treatment of choice for many cases. Despite improvements in shunt technology and technique, morbidity and mortality remain. The incidence of early shunt obstruction is high with later failures seen less frequently. This review aims to examine mortality associated with mechanical failure of CSF shunts within Queensland. Neurosurgical and Intensive Care databases were reviewed for cases of mortality associated with shunt failure. Eight cases were identified between the years of 1992 and 2002 with the average age at death 7.7 years. Deaths occurred on average 2 years after last shunt revision. Seven of the eight patients lived outside the metropolitan area. Shunting remains an imperfect means of treating hydrocephalus. Mortality may be encountered at any time post surgery and delays to surgical intervention influence this. Alternative measures such as third ventriculostomy or the placement of a separate access device should be considered. In the event of emergency, a spinal needle could be used to access the ventricle along the course of the ventricular catheter. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
An experimental program has been undertaken to explore the effect of iron concentration on porosity levels in Al-Si alloy sand castings. The effect of iron concentrations above, below and equal to the critical iron content for alloys with either 5 or 9% Si and either 0, 1 or 3% Cu has been determined. Increasing iron concentrations were found to increase porosity in all alloys except the copper-containing Al-5% Si alloys which displayed a porosity minimum at the critical iron content. Porosity was observed to be higher in the Al-9% Si castings than the Al-5% Si castings. Differences in the primary phase volume fraction and morphology may explain this observation. The results of this experimental work do not support the existing published theories that have been proposed to explain the effect the iron on porosity. An alternative theory is therefore developed. (c) 2006 Elsevier B.V. All rights reserved.