130 resultados para spine shrimp
Resumo:
The Caridina indistincta complex is a group of closely related atyid shrimps that inhabit coastal freshwater streams throughout north-eastern Australia. Using mitochondrial DNA sequence data (cytochrome oxidase 1, CO1), we (1) inferred the timing of speciation in the C. indistincta group and (2) examined the intraspecific phylogeographic patterns within the group. Assuming a shrimp-specific rate of CO1 evolution, the level of sequence divergence among species suggests that speciation took place during the Miocene epoch. Within one widespread mainland species, phylogeographic patterns suggest strong geographic 'regionalisation' of mtDNA lineages that are most likely of Pleistocene origin. By contrast, another species comprises two highly divergent mtDNA lineages that occur in sympatry. We suggest that although Pleistocene sea-level regressions appear important in generating population-level phylogeographic patterns, these events were largely unimportant in the formation of species in this group.
Resumo:
The tribe Hilarini (Diptera: Empididae), commonly known as dance flies, can be recognised by their swollen silk-producing prothoracic basitarsus, a male secondary sexual characteristic. The ultrastructure and function of the silk-producing basitarsus from one undescribed morphospecies of Hilarini, 'Hilarempis 20', is presented. Male H. 20 collect small parcels of diatomaceous algae from the surface of freshwater creeks that they bind with silk produced by the gland in the basitarsus. The gift is then presented to females in a nearby swarm, composed predominately of females. The basitarsus houses approximately 12 pairs of class III dermal glandular units that congregate on the ventral side of the cavity. Each gland cell has a large extracellular lumen where secretion accumulates. The lumen drains to the outside via a conducting canal encompassed by a canal cell and a duct extending through the shaft of a specialised secretory spine. The secretory spines lie in pairs in a ventral groove that runs the length of the basitarsus. A comparison of the basitarsal secretory spines with sensilla on the basitarsi of non gland-bearing legs of males, and with non gland-bearing prothoracic. basitarsi of females, suggests that the glandular units are derived from contact chemosensory sensilla. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Background: Although early in life there is little discernible difference in bone mass between boys and girls, at puberty sex differences are observed. It is uncertain if these differences represent differences in bone mass or just differences in anthropometric dimensions. Aim: The study aimed to identify whether sex independently affects bone mineral content (BMC) accrual in growing boys and girls. Three sites are investigated: total body (TB), femoral neck (FN) and lumbar spine (LS). Subjects and methods: 85 boys and 67 girls were assessed annually for seven consecutive years. BMC was assessed by dual energy X-ray absorptiometry (DXA). Biological age was defined as years from age at peak height velocity (PHV). Data were analysed using a hierarchical (random effects) modelling approach. Results: When biological age, body size and body composition were controlled, boys had statistically significantly higher TB and FN BMC at all maturity levels (p < 0.05). No independent sex differences were found at the LS (p > 0.05). Conclusion: Although a statistical significant sex effect is observed, it is less than the error of the measurement, and thus sex difference are debatable. In general, sex difference are explained by anthropometric difference
Resumo:
Objectives: To examine the changes in torque output resulting from fatigue, as well as changes in electromyographic measures of trunk muscles during isometric axial rotation and to compare these changes between directions of axial rotation. Design: Subjects performed fatiguing right and left isometric axial rotation of the trunk at 80% of maximum voluntary contraction while standing upright. Setting: A rehabilitation center. Participants: Twenty-three men with no history of back pain. Interventions: Not applicable. Main Outcome Measures: Surface electromyographic Signals were recorded from 6 trunk muscles bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results: During the fatiguing axial rotation contraction, coupling torques of both sagittal and coronal planes were slightly decreased and no difference was found between directions of axial rotation. Decreasing median frequency and an increase in electromyographic amplitude were also found in trunk muscles with different degrees of changes in individual muscles. There were significant differences (P
Resumo:
Objective: The aim of the present study was to investigate the between-days reliability of electromyographic (EMG) measurement of 6 bilateral trunk muscles and also the torque output in 3 planes during isometric right and left axial rotation at different exertion levels. Methods: Ten healthy subjects performed isometric right and left axial rotation at 100, 70, 50 and 30% maximum voluntary contractions in two testing sessions at least 7 days apart. EMG amplitude and frequency analyses of the recorded surface EMG signals were performed for rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum and multifidus bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were measured. Results: For both EMG amplitude and frequency values, good (intraclass correlation coefficient, ICC = 0.75-0.89) to excellent (ICC greater than or equal to 0.90) reliability was found in the 6 trunk muscles at different exertion levels during axial rotation. The reliability of both maximal isometric axial rotation torque and coupling torques in sagittal and coronal planes were found to be excellent (ICC greater than or equal to 0.93). Conclusions: Good to excellent reliability of EMG measures of trunk muscles and torque measurements during isometric axial rotation was demonstrated. This provides further confidence of using EMG and triaxial torque assessment as outcome measures in rehabilitation and in the evaluation of the human performance in the work place. (C) 2003 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Resumo:
Abnormalities of calcium and vitamin D metabolism in cystic fibrosis (CF) are well documented. We tested the hypothesis that alterations in calcium metabolism are related to vitamin D deficiency, and that bone resorption is increased relative to accretion in patients with CF. Calcitropic hormones, electrolytes, osteocalcin (OC) and bone alkaline phosphatase (BAP), (markers of bone mineralisation), urinary deoxypyridinoline [total (t) Dpd, a marker of bone resorption] and lumbar spine bone mineral density (LS BMD), expressed as a z-score, were measured in 149 (81 M) CF and 141 (61 M) control children aged 5.3-10.99 years, adolescents aged 11-17.99 years and adults aged 18-55.9 years. Data were analysed by multiple regression to adjust for age. In patients, FEV1% predicted and CRP (as disease severity markers), genotype and pancreatic status (PS) were recorded. The distribution of PTH differed between groups (P
Resumo:
Adolescents and adults with CF have lower bone mineral density (BMD) than normal, but its relationship with phenotype is not well understood. Point FEV1% predicted (FEV) and rate of change of FEV are biased estimates of disease severity, because progressively older subjects represent a selected survivor population, with females at greater risk of death than males. To investigate the relationship between BMD and phenotype we used an index (predicted age at death) derived from Bayesian estimates of slope and intercept of FEV, age at last measurement and survival status. Predictive equations for the index were derived from 97 subjects (78 survivors) from the RCH CF clinic, and applied to a group of 102 comparable subjects who had BMD measured, classified as having‘mild’ ()75th), ‘moderate’ (25– 75th), or ‘severe’ (-25th centile) phenotype. Total body (TB) and lumbar spine (LS) BMD z-scores (Z) were compared, adjustingfor gender effects, using 2-way ANOVA. Annual mean change in FEV segregated, as expected, according to phenotype, ‘severe’ (ns25), ‘moderate’ (ns51) and ‘mild’ (ns25) y3.01(y3.73 to y2.30)%, y0.85(y1.36 to y0.35)%, 2.70(1.92 to 3.46)%, respectively, with no gender difference. LS and TB BMDZ were different in each phenotype (P-s 0.002), LS BMDZ for ‘severe’, ‘moderate’ and ‘mild’ y1.63(CI: y2.07 to y 1.19), y0.86(CI: y1.17 to y0.55), y0.06(CI: y0.54 to 0.41). Males had lower LS BMDZ than females overall (y1.22 (CI: y1.54 to y0.91) vs. y0.48(CI: y 0.84 to y0.12) Ps0.002). In the ‘severe’ group, males had lower TB BMDZ and LS BMDZ (PF0.002). Low BMD is associated with ‘moderate’ and ‘severe’ phenotypes, with relative preservation in females in the ‘severe’ group. Female biology (reproductive fitness) might promote resistance to bone resorption at a critical level of BMD loss.
Resumo:
Aims: To quantify Listeria levels on the shell and flesh of artificially contaminated cooked prawns after peeling, and determine the efficacy of Listeria innocua as a model for L. monocytogenes in this system. Methods and Results: A L. monocytogenes and L. innocua strain were inoculated separately onto cooked black tiger prawns using two protocols ( immersion or swabbing with incubation). Prawns were peeled by two methods ( gloved hand or scalpel and forceps) and numbers of Listeria on shells, flesh and whole prawn controls were determined. Prawns were exposed to crystal violet dye to assess the penetration of liquids. Regardless of preparation method or bacterial strain there were ca 1log(10) CFU more Listeria per shell than per peeled prawn. Dye was able to penetrate to the flesh in all cases. Conclusions: Shell-on prawns may be only slightly safer than shell-off prawns. Listeria innocua is an acceptable model for L. monocytogenes in this system. Significance and Impact of the Study: Reduced risk from L. monocytogenes on prawns can only be assured by adequate hygiene or heating.
Resumo:
Mental retardation in individuals with Down syndrome (DS) is thought to result from anomalous development and function of the brain; however, the underlying neuropathological processes have yet to be determined. Early implementation of special care programs result in limited, and temporary, cognitive improvements in DS individuals. In the present study, we investigated the possible neural correlates of these limited improvements. More specifically, we studied cortical pyramidal cells in the frontal cortex of Ts65Dn mice, a partial trisomy of murine chromosome 16 (MMU16) model characterized by cognitive deficits, hyperactivity, behavioral disruption and reduced attention levels similar to those observed in DS, and their control littermates. Animals were raised either in a standard or in an enriched environment. Environmental enrichment had a marked effect on pyramidal cell structure in control animals. Pyramidal cells in environmentally enriched control animals were significantly more branched and more spinous than non-enriched controls. However, environmental enrichment had little effect on pyramidal cell structure in Ts65Dn mice. As each dendritic spine receives at least one excitatory input, differences in the number of spines found in the dendritic arbors of pyramidal cells in the two groups reflect differences in the number of excitatory inputs they receive and, consequently, complexity in cortical circuitry. The present results suggest that behavioral deficits demonstrated in the Ts65Dn model could be attributed to abnormal circuit development.
Resumo:
Recent studies have revealed marked regional variation in pyramidal cell morphology in primate cortex. In particular, pyramidal cells in human and macaque prefrontal cortex (PFC) are considerably more spinous than those in other cortical regions. PFC pyramidal cells in the New World marmoset monkey, however, are less spinous than those in man and macaques. Taken together, these data suggest that the pyramidal cell has become more branched and more spinous during the evolution of PFC in only some primate lineages. This specialization may be of fundamental importance in determining the cognitive styles of the different species. However, these data are preliminary, with only one New World and two Old World species having been studied. Moreover, the marmoset data were obtained from different cases. In the present study we investigated PFC pyramidal cells in another New World monkey, the owl monkey, to extend the basis for comparison. As in the New World marmoset monkey, prefrontal pyramidal cells in owl monkeys have relatively few spines. These species differences appear to reflect variation in the extent to which PFC circuitry has become specialized during evolution. Highly complex pyramidal cells in PFC appear not to have been a feature of a common prosimian ancestor, but have evolved with the dramatic expansion of PFC in some anthropoid lineages.