257 resultados para chemotactic peptides
Resumo:
Kalata B1 is a member of a new family of polypeptides, isolated from. plants, which have a cystine knot structure embedded within an amide-cyclized backbone. This family of molecules are the largest known cyclic peptides, and thus, the mechanism of synthesis and folding is of great interest. To provide information about both these phenomena, we have synthesized kalata B1 using two distinct strategies. In the first, oxidation of the cysteine residues of a linear precursor peptide to form the correct disulfide bonds results in folding of the three-dimensional structure and preorganization of the termini in close proximity for subsequent cyclization. The second approach involved cyclization prior to oxidation. In the first method, the correctly folded peptide was produced only in the presence of partially hydrophobic solvent conditions. These conditions are presumably required to stabilize the surface-exposed hydrophobic residues. However,; in the synthesis,involving cyclization prior to oxidation, the cyclic reduced peptide folded to a significant degree in the absence of hydrophobic solvents and even more efficiently in the presence of hydrophobic solvents. Cyclization clearly has a major effect on the folding pathway and facilitates formation of the correctly disulfide-bonded form in aqueous solution; In addition to facilitating folding to a compact stable structure cyclization has an important effect on biological activity as assessed by hemolytic activity.
Resumo:
Circular dichroism and NMR spectroscopy have been used to determine the structure of the low-density lipoprotein (LDL) receptor-binding peptide, comprising residues 130-152, of the human apolipoprotein E. This peptide has little persistent three-dimensional structure in solution, but when bound to micelles of dodecylphosphocholine (DPC) it adopts a predominantly alpha-helical structure. The three-dimensional structure of the DPC-bound peptide has been determined by using H-1-NMR spectroscopy: the structure derived from NOE-based distance constraints and restrained molecular dynamics is largely helical. The derived phi and psi angle order parameters show that the helical structure is well defined but with some flexibility that causes the structures not to be superimposable over the full peptide length. Deuterium exchange experiments suggest that many peptide amide groups are readily accessible to the solvent, but those associated with hydrophobic residues exchange more slowly, and this helix is thus likely to be positioned on the surface of the DPC micelles. In this conformation the peptide has one hydrophobic face and two that are rich in basic amino acid side chains. The solvent-exposed face of the peptide contains residues previously shown to be involved in binding to the LDL receptor.
Resumo:
The functional importance of members of the S100 Ca2+-binding protein family is recently emerging. A variety of activities, several of which are apparently opposing, are attributed to S100A8, a protein implicated in embryogenesis, growth, differentiation, and immune and inflammatory processes. Murine (m) S100A8 was initially described as a chemoattractant (CP-10) for myeloid cells. It is coordinately expressed with mS100A9 (MRP14) in neutrophils and the non-covalent heterodimer is presumed to be the functional intracellular species. The extracellular chemotactic activity of mS100A8, however, is not dependent on mS100A9 and occurs at concentrations (10(-13)-10(-11) M) at which the non-covalent heterodimer would probably dissociate. This review focuses on the structure and post-translational modifications of mS100A8/A9 and their effects on function, particularly chemotaxis.
Resumo:
Dimerisation of leucine zippers results from the parallel association of alpha-helices to form a coiled coil. Coiled coils comprise a heptad repeat, denoted as (abcdefg)(n), where residues at positions a and d are hydrophobic and constitute the core of the dimer interface. Charged amino acids at the e and g positions of the coiled coil are thought to be the major influence on dimerisation specificity through the formation of attractive and repulsive interhelical electrostatic interactions. However, the variability of a-position residues in leucine zipper transcription factors prompted us to investigate their influence on dimerisation specificity. We demonstrate that mutation of a single interfacial a-position Ala residue to either Val, Ile or Leu significantly alters the homo- and heterodimerisation specificities of the leucine zipper domain from the c-Jun transcription factor. These results illustrate the importance of a-position residues in controlling leucine zipper dimerisation specificity in addition to providing substantial contributions to dimer stability.
Resumo:
An increased degree of utilization of the potential N-glycosylation site In the fourth repeat unit of the human tau protein may be involved in the inability of tau to bind to the corresponding tubulin sequence(s) and in the subsequent development of the paired helical filaments of Alzheimer's disease. To model these processes, we synthesized the octadecapeptide spanning this region without sugar, and with the addition of an N-acetyl-glucosamine moiety. The carbohydrate-protected, glycosylated asparagine was incorporated as a building block during conventional Fmoc-solid phase peptide synthesis. While the crude non-glycosylated analog was obtained as a single peptide, two peptides with, the identical, expected masses, in approximately equal amounts, were detected after the cleavage of the peracetylated glycopeptide. Surprisingly, the two glycopeptides switched positions on the reversed-phase high performance liquid chromatogram after removal of the sugar-protecting acetyl groups. Nuclear magnetic resonance spectroscopy and peptide sequencing identified the more hydrophobic deprotected peak as the target peptide, and the more hydrophilic deprotected peak as a peptide analog in which the aspartic acid-bond just preceding the glycosylated asparagine residue was isomerized resulting in the formation of a beta-peptide. The anomalous chromatographic behavior of the acetylated beta-isomer could be explained on the basis of the generation of an extended hydrophobic surface which is not present in any of the other three glycopeptide variants. Repetition of the syntheses, with altered conditions and reagents, revealed reproducibly high levels of aspartic acid-bond isomerization of the glycopeptide as well as lack of isomerization for the non-glycosylated parent analog. If similar increased aspartic acid-bond isomerization occurs in vivo, a protein modification well known to take place for both the amyloid deposits and the neurofibrillary tangles in Alzheimer's disease, this process may explain the aggregation of glycosylated tau into the paired helical filaments in the affected brains. Copyright (C) 1999 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
MiAMP1 is a recently discovered 76 amino acid residue, highly basic protein from the nut kernel of:Macadamia integrifolia which possesses no sequence homology to any known protein and inhibits the growth of several microbial plant pathogens in vitro while having no effect on mammalian or plant cells. It is considered to be a potentially useful tool for the genetic engineering of disease resistance in transgenic crop plants and for the design of new fungicides. The three-dimensional structure of MiAMP1 was determined through homonuclear and heteronuclear (N-15) 2D NMR spectroscopy and subsequent simulated annealing calculations with the ultimate aim of understanding the structure-activity relationships of the protein. MiAMP1 is made up of eight beta-strands which are arranged in two Greek key motifs. These Greek key motifs associate to form a Greek key beta-barrel. This structure is unique amongst plant antimicrobial proteins and forms a new class which we term the beta-barrelins. Interestingly, the structure of MiAMP1 bears remarkable similarity to a yeast killer toxin from Williopsis mrakii. This toxin acts by inhibiting beta-glucan synthesis and thereby cell wall construction in sensitive strains of yeast. The structural similarity of MiAMP1 and WmKT, which originate from plant and fungal phyla respectively, may reflect a similar mode of action. (C) 1999 Academic Press.
Resumo:
The small amounts of antibacterial peptides that can be isolated from insects do not allow detailed studies of their range of activity, side-chain sugar requirements, or their conformation, factors that frequently play roles in the mode of action. In this paper, we report the solid-phase step-by-step synthesis of diptericin, an 82-mer peptide, originally isolated from Phormia terranovae. The unglycosylated peptide was purified to homogeneity by conventional reversed-phase high performance liquid chromatography, and its activity spectrum was compared to that Of synthetic unglycosylated drosocin, which shares strong sequence homology with diptericin's N-terminal domain. Diptericin appeared to have antibacterial activity:for only a limited number of Gram-negative bacteria. Diptericin's submicromolar potency against Escherichia coli strains indicated that, in a manner similar to drosocin, the presence of the carbohydrate side chain is not,necessary to kill bacteria. Neither the N-terminal, drosocin-analog fragment, nor the C-terminal, glycine-rich attacin-analog region was active against any of the bacterial strains studied, regardless of whether the Gal-GalNAc disaccharide units were attached. This suggested that the active site of diptericin fell outside the drosocin or attacin homology domains. In addition, the conformation of diptericin did not seem to play a role in the antibacterial activity, as was demonstrated by the complete lack of ordered structure by two-dimensional nuclear magnetic resonance spectroscopy and circular dichroism. Diptericin completely killed bacteria within I h, considerably faster than drosocin and the attacins; unlike some other, fast-acting antibacterial peptides, diptericin did not lyse normal mammalian cells. Taken together, these data suggest diptericin does not belong to any known class of antibacterial peptides.
Resumo:
Four experiments were carried out in Merino ewes during a period of 4 years to determine the long-term effects of immunization against different synthetic peptides mimicking the amine terminal of the or subunit of porcine inhibin. Peptides were conjugated to human serum albumin and 100-200 mu g emulsified in Freund's complete adjuvant for the primary immunization. Usually two booster injections were given at monthly intervals with 50-100 mu g conjugated peptide using either incomplete Freund's adjuvant or Montanide : Marcel. In some experiments a further immunization was carried in the next year. Blood samples were taken 10 days after each immunization, during the luteal phase, for estimation of gonadotrophin concentrations and determination of inhibin antibody titres. One day after blood sampling cloprostenol was used to induce luteolysis and laparoscopy was performed in the subsequent oestrous cycle. Immunization of ewes with synthetic peptides 1-32, 1-26, 7-26 and 8-30 resulted in large increases in the ovulation rate (OR). An approximately two-fold increase in OR was observed following the first booster immunization with these peptides and a three- to five-fold increase after the second booster immunization. Immunization with these large peptides resulted in a sustained increase in OR for a period of at least 1 year after the second booster immunization. Of the shorter peptides, peptides 10-26 and 13-26 gave a reasonable ovulatory response, although it was more difficult to obtain a response with peptides 1-16, 8-22, 13-25, 8-19 and 10-19; peptides 7-13 and 1-6 gave no response (but were examined for one breeding season only). The smaller peptides led to lower inhibin antibody titres that were not necessarily associated with increased follicle-stimulating hormone (FSH) or OR. More intensive blood sampling in one experiment showed that following primary immunization against peptide 1-32 there was a transient increase in plasma FSH which did not lead to an increased OR. Moreover, a prolonged period of raised FSH after the first booster was significantly correlated with increased OR. In these animals antibody titres were only slightly increased after primary immunization, but after the first booster immunization higher titres were observed that were significantly correlated with trough FSH values and the subsequent OR. These results are interpreted as showing that (1) to obtain an increase in OR peptides 1-32, 1-26 and 7-26 are suitable as immunogens; (2) smaller peptides are less reliable, often require multiple injections, and the response may be delayed; and (3) an extended period of raised plasma FSH is needed to give a large ovulatory response.
Resumo:
Several macrocyclic peptides (similar to 30 amino acids), with diverse biological activities, have been isolated from the Rubiaceae and Violaceae plant families over recent years. We have significantly expanded the range of known macrocyclic peptides with the discovery of 16 novel peptides from extracts of Viola hederaceae, Viola odorata and Oldenlandia affinis. The Viola plants had not previously been examined for these peptides and thus represent novel species in which these unusual macrocyclic peptides are produced. Further, we have determined the three-dimensional struc ture of one of these novel peptides, cycloviolacin O1, using H-1 NMR spectroscopy. The structure consists of a distorted triple-stranded beta-sheet and a cystine-knot arrangement of the disulfide bonds. This structure is similar to kalata B1 and circulin A, the only two macrocyclic peptides for which a structure was available, suggesting that despite the sequence variation throughout the peptides they form a family in which the overall fold is conserved. We refer to these peptides as the cyclotide family and their embedded topology as the cyclic cystine knot (CCK) motif. The unique cyclic and knotted nature of these molecules makes them a fascinating example of topologically complex proteins. Examination of the sequences reveals they can be separated into two subfamilies, one of which tends to contain a larger number of positively charged residues and has a bracelet-like circularization of the backbone. The second subfamily contains a backbone twist due to a cis-Pro peptide bond and may conceptually be regarded as a molecular Moebius strip. Here we define the structural features of the two apparent subfamilies of the CCK peptides which may be significant for the likely defense related role of these peptides within plants. (C) 1999 Academic Press.
Resumo:
A comparison is made between the structures and calcium binding properties of four cyclic octapeptides that differ in the number of heterocyclic thiazole and oxazoline ring constraints. The conformations of the naturally occurring cyclic octapeptides ascidiacyclamide 1 and patellamide D 2, which each contain two oxazoline and two thiazole rings, are compared by H-1 NMR spectroscopy with the analogues cyclo(Thr-D-Val(Thz)-Ile)(2) 3 with just two thiazoles, and cyclo(Thr-D-Val-alpha Abu-Ile)(2) 4, with no 5-membered rings. The conformations observed in the solid state for ascidiacyclamide (saddle) and patellamide D (twisted figure of eight) were retained in solution, whilst peptide 3 was found to have a chair shape and peptide 4 displayed a range of conformations. The solid state structure of 4 revealed that the peptide takes a relatively planar conformation with a number of transannular hydrogen bonds, which are apparently retained in solution. Complexation studies utilising H-1 NMR and CD spectroscopy yielded 1∶1 calcium-peptide binding constants (log K) for the four peptides (2.9 (1), 2.8 (2), 4.0 (3) and 5.5 (4)) as well as a 1 : 2 metal-peptide binding constant for 3 (log K = 4.5). The affinity for Ca2+ thus decreases with increasing number of 5-membered ring constraints in the macrocycle (4 > 3 > 2 approximate to 1).
Resumo:
The 32-residue peptide, RK-1, a novel kidney-derived three disulfide-bonded member of the antimicrobial alpha-defensin family, was synthesized by the continuous now Fmoc-solid phase method. The crude, cleaved and S-reduced Linear peptide was both efficiently folded and oxidized in an acidic solution of aqueous dimethyl sulfoxide. Following purification of the resulting product, it was shown by a variety of analytical techniques, including matrix assisted laser desorption time of flight mass spectrometry, to possess a very high degree of purity. The disulfide bond pairing of the synthetic peptide was determined by H-1-NMR spectroscopy and confirmed to be a Cys(1)-Cys(6), Cys(2)-Cys(4), Cys(3)-Cys(5) arrangement similar to other mammalian alpha-defensin peptides. The synthetic RK-1 was also shown to inhibit the growth of Escherichia coli type strain NCTC 10418, Copyright (C) 2000 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Two alpha-conotoxins PnIA and PnIB (previously reported as being mollusc specific) which differ in only two amino acid residues (AN versus LS at residues 10 and 11, respectively), show markedly different inhibition of the neuronal nicotinic acetylcholine receptor response in bovine chromaffin cells, a mammalian preparation. Whereas alpha-conotoxin PnIB completely inhibits the nicotine-evoked catecholamine release at 10 mu M, with IC50 = 0.7 mu M, alpha-conotoxin PnIA is some 30-40 times less potent. Two peptide analogues, [A10L]PnIA and [N11S]PnIA were synthesized to investigate the extent to which each residue contributes to activity. [A10L]PnIA (IC50 = 2.0 mu M) completely inhibits catecholamine release at 10 mu M whereas [N11S]PnIA shows Little inhibition. In contrast, none of the peptides inhibit muscle-type nicotinic responses in the rat hemi-diaphragm preparation. We conclude that the enhanced potency of alpha-conotoxin PnIB over alpha-conotoxin PnIA in the neuronal-type nicotinic response is principally determined by the larger, more hydrophobic leucine residue at position 10 in alpha-conotoxin PnIB. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
Objective. Differentiated dendritic cells (DC) and other antigen-presenting cells are characterized by the nuclear location of RelB, a member of the nuclear factor kappa B/Rel family. To characterize and enumerate differentiated DC in rheumatoid arthritis (RA) peripheral blood (PB), synovial fluid (SF), and synovial tissue (ST), the expression and location of RelB were examined. Methods. RelB protein expression and cellular location were determined in RA PB, SF, and ST by flow cytometry and immunohistochemical analysis of purified cells or formalin-fixed tissue. DNA-binding activity of RelB was determined by electrophoretic: mobility shift-Western immunoblotting assays. Results. Circulating RA PBDC resembled normal immature PBDC in that they did not express intracellular RelB protein. In RA ST serial sections, cells containing nuclear RelB (nRelB) were enriched in perivascular regions. A mean +/- SD of 84 +/- 10% of these cells were DC. The remaining nRelB+,HLA-DR+ cells comprised B cells and macrophages. Only 3% of sorted SFDC contained nRelB, However, RelB present in the nucleus of these SFDC was capable of binding DNA, and therefore capable of transcriptional activity. Conclusion. Circulating DC precursors differentiate and express RelB after entry into rheumatoid ST. Differentiated DC can thus be identified by immunohistochemistry in formalin-fixed ST. Signals for DC maturation may differ between RA ST and SF, resulting in nuclear location of RelB predominantly in ST. This is likely to have functional consequences for the DC in these sites.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins which contain classical monopartite and bipartite nuclear localization sequences (NLSs), and facilitates their transport into the nucleus. To determine the structural basis of the recognition of the two classes of NLSs by mammalian importin-alpha, we co-crystallized an N-terminally truncated mouse receptor protein with peptides corresponding to the monopartite NLS from the simian virus 40 (SV40) large T-antigen, and the bipartite NLS from nucleoplasmin. We show that the monopartite SV40 large T-antigen NLS binds to two binding sites on the receptor, similar to what was observed in yeast importin-alpha. The nucleoplasmin NLS-importin-alpha complex shows, for the first time, the mode of binding of bipartite NLSs to the receptor. The two basic clusters in the NLS occupy the two binding sites used by the monopartite NLS, while the sequence linking the two basic clusters is poorly ordered, consistent with its tolerance to mutations. The structures explain the structural basis for binding of diverse NLSs to the sole receptor protein. (C) 2000 Academic Press.
Resumo:
Using CD and 2D H-1 NMR spectroscopy, we have identified potential initiation sites for the folding of T4 lysozyme by examining the conformational preferences of peptide fragments corresponding to regions of secondary structure. CD spectropolarimetry showed most peptides were unstructured in water, but adopted partial helical conformations in TFE and SDS solution. This was also consistent with the H-1 NMR data which showed that the peptides were predominantly disordered in water, although in some cases, nascent or small populations of partially folded conformations could be detected. NOE patterns, coupling constants, and deviations from random coil Her chemical shift values complemented the CD data and confirmed that many of the peptides were helical in TFE and SDS micelles. In particular, the peptide corresponding to helix E in the native enzyme formed a well-defined helix in both TFE and SDS, indicating that helix E potentially forms an initiation site for T4 lysozyme folding. The data for the other peptides indicated that helices D, F, G, and H are dependent on tertiary interactions for their folding and/or stability. Overall, the results from this study, and those of our earlier studies, are in agreement with modeling and IID-deuterium exchange experiments, and support an hierarchical model of folding for T4 lysozyme.