145 resultados para Spinal Injury
Resumo:
Indicators are valuable tools used to measure progress towards a desired health outcome. Increased awareness of the public health burden due to injury has lead to a concomitant interest in monitoring the impact of national initiatives that aim to reduce the size of the burden. Several injury indicators have now been proposed. This study examines the ability of each of the suggested indicators to reflect the nature and extent of the burden of non-fatal injury. A criterion validity, population-based, prospective cohort study was conducted in Brisbane, a sub-tropical Metropolitan City on the eastern seaboard of Australia, over a 12-month period between 1 January and 31 December 1998. Neither the presence of a long bone fracture nor the need for hospitalisation for 4 or more days were sensitive or specific indicators for 'serious' or major injury as defined by the 'Gold Standard' Injury Severity Score (ISS). Subsequent analysis, using other public health outcome measures demonstrated that the major component of the illness burden of injury was in fact due to 'minor' not serious injury. However, the suggested indicators demonstrated low sensitivity and specificity for these outcomes as well. The results of the study support the need to include at least all hospitalisations in any population-based measure of injury and not attempt to simplify the indicator to a more convenient measure aimed at identifying just those cases of,serious' injury.
Resumo:
Background/Aims: These studies investigated the role of apoptosis following ischaemia/reperfusion (I/R) injury to the liver and the effect of pretreatment with Cyclosporin A. Methods: Male Sprague-Dawley rats received 30 min of warm ischaemia followed by a period of reperfusion of 6 h. Rats were given olive oil or Cyclosporin A (30 mg/kg p.o.) the day before surgery. Neutrophil numbers were assessed in haematoxylin-eosin-stained sections of liver. In situ staining of sections using TdT-mediated dUTP-fluoreseein nick-end labelling was carried out to determine the extent of apoptosis, followed by electron microscopy. Semi-quantitative polymerase chain reaction (PCR) analysis of the transcript for Fas antigen was performed. Results and Conclusions: High levels of apoptosis were observed in I/R injury, which were greatly ameliorated in Cyclosporin A-pretreated groups. PCR analysis indicated a reduction in the level of expression of Fas transcript in Cyclosporin A-treated rats. Histological analysis showed a significant increase in the number of neutrophils infiltrating I/R-injured tissue (62 +/- 10.69, it = 16), which was markedly reduced by Cyclosporin A pretreatment (16 +/- 7, n = 6, P < 0.05). These results indicate a role of parenchymal apoptosis in the pathogenesis of I/R injury, which occurs in association with neutrophil infiltration, both of which can be significantly reduced by Cyclosporin A pretreatment. (C) 2002 European Association for the Study of the Liver. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Objective. This is an over-view of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. Study Design: After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheating glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. Methods: The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Results: Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic lesion of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of dopamine altered these indices enough to allow accurate differentiation of schizophrenics from control patients, leading to, possibly for the first time, an early objective diagnosis of schizophrenia and possible assessment of preventive strategies. OEGs from the nose were shown to be as effective as those from the olfactory bulb in promoting axonal growth across transected spinal cords even when added I month after injury in the rat. These otherwise paraplegic rats grew motor and proprioceptive and fine touch fibers with corresponding behavioral improvement. Conclusions. The tissues of the olfactory mucosa are readily available to the otolaryngologist. Being surface cells, they must regenerate (called neurogenesis). Biopsy of this area and amplification of cells in culture gives the scientist a window to the developing brain, including early diagnosis of schizophrenia. The Holy Grail of neurological disease is the cure of traumatic paraplegia and OEGs from the nose promote that repair. The otolaryngologist may become the necessary partner of the neurophysiologist and spinal surgeon to take the laboratory potential of paraplegic cure into the day-to-day realm of clinical reality.
Resumo:
Members of the GATA transcription factor gene family have been implicated in a variety of developmental processes, including that of the vertebrate central nervous system. However, the role of GATA proteins in spinal cord development remains unresolved. In this study, we investigated the expression and function of two GATA proteins, GATA2 and GATA3, in the developing chick spinal cord. We show that both proteins are expressed by a distinct subpopulation of ventral interneurons that share the same dorsoventral position as CHX10-positive V2 interneurons. However, no coexpression is observed between the two GATA proteins and CHX10. By in vivo notochord grafting and cyclopamine treatment, we demonstrate that the spatially restricted pattern of GATA3 expression is regulated, at least in part, by the signaling molecule Sonic hedgehog. In addition, we further show that Sonic hedgehog induces GATA3 expression in a dose-dependent manner. Using in ovo electroporations, we also demonstrate that GATA2 is upstream of GATA3 in the same epigenetic cascade and that GATA3 is capable of inducing GATA2 expression in vivo. Furthermore, the ectopically expressed GATA proteins can repress differentiation of other ventral cell fates, but not the development of progenitor populations identified by PAX protein expression. Taken together, our findings strongly suggest an important role for GATA2 and GATA3 proteins in the establishment of a distinct ventral interneuron subpopulation in the developing chick spinal cord. (C) 2002 Elsevier Science (USA).
Resumo:
We review investigations that have lead to a model of how the ventral spinal cord of higher vertebrate embryos is patterned during development. Central to this model is the secreted morphogen protein, Sonic hedgehog. There is now considerable evidence that this molecule acts in a concentration-dependent manner to direct the development of the spinal cord. Recent studies have suggested that two classes of homeodomain proteins are induced by threshold concentrations of Sonic hedgehog. Reciprocal inhibition between the two classes acts to convert the continuous gradient of Sonic hedgehog into defined domains of transcription factor expression. However, a number of aspects of ventral spinal cord patterning remain to be elucidated. Some issues currently under investigation involve temporal aspects of Shh-signalling, the role of other signals in ventral patterning and the characterisation of ventral interneurons. In this review, we discuss the current state of knowledge of these issues and present some preliminary studies aimed at furthering understanding of these processes in spinal cord patterning.
Resumo:
Dysfunction in the motor system is a feature of persistent whiplash associated disorders. Little is known about motor dysfunction in the early stages following injury and of its progress in those persons who recover and those who develop persistent symptoms. This study measured prospectively, motor system function (cervical range of movement (ROM), joint position error (JPE) and activity of the superficial neck flexors (EMG) during a test of cranio-cervical flexion) as well as a measure of fear of re-injury (TAMPA) in 66 whiplash subjects within 1 month of injury and then 2 and 3 months post injury. Subjects were classified at 3 months post injury using scores on the neck disability index: recovered (30). Motor system function was also measured in 20 control subjects. All whiplash groups demonstrated decreased ROM and increased EMG (compared to controls) at 1 month post injury. This deficit persisted in the group with moderate/severe symptoms but returned to within normal limits in those who had recovered or reported persistent mild pain at 3 months. Increased EMG persisted for 3 months in all whiplash groups. Only the moderate/severe group showed greater JPE, within 1 month of injury, which remained unchanged at 3 months. TAMPA scores of the moderate/severe group were higher than those of the other two groups. The differences in TAMPA did not impact on ROM, EMG or JPE. This study identifies, for the first time, deficits in the motor system, as early as 1 month post whiplash injury, that persisted not only in those reporting moderate/severe symptoms at 3 months but also in subjects who recovered and those with persistent mild symptoms. (C) 2002 International Association for the Study of Pain. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Objective: (1) To establish an incidence figure for dysphagia in a population of pediatric traumatic brain injury (TBI) cases; (2) to provide descriptive data on the admitting characteristics, patterns of resolution, and outcomes of children with and without dysphagia after TBI; and (3) to identify any factors present at admission that may predict dysphagia. Participants: A total of 1, 145 children consecutively admitted to an acute care setting for traumatic brain injury between July 1995 and July 2000. Main outcome measure: Medical parameters relating to dysphagia based on medical chart review. Results: (1) Dysphagia incidence figure of 5.3% across all pediatric head injury admissions. Incidence figures of 68% for severe TBI, 15% for moderate TBI, and only 1% for mild brain injury. (2) Statistically significant differences were found between the dysphagic and nondysphagic subgroups on the variables of length of stay, length of ventilation, Glasgow Coma Scale (GCS), computed tomography classification, duration of speech pathology intervention, supplemental feeding duration, duration until initiation of oral intake (DIOF), duration to total oral intake (DTOF), and period of time from the initiation of intake until achievement of total oral intake (DI-TOF). (3) Significant predictive factors for dysphagia included GCS < 8.5 and a ventilation period in excess of 1.5 days. Conclusion: The provision of incidence data and predictive factors for dysphagia will enable clinicians in acute care settings to allocate resources necessary to deal with the predicted number of dysphagia cases in a pediatric population, and assist in predicting patients who are at risk for dysphagia following TBI. Early detection of patients with swallowing dysfunction will be aided by these data, in turn helping to facilitate effective medical and speech pathology intervention via assisting the reduction of medical complications such as aspiration pneumonia.
Resumo:
Impaired self-awareness is a common problem following traumatic brain injury. Without adequate self-awareness, a person's motivation to participate in rehabilitation may be limited, which in turn can have an adverse effect on his or her functional outcome. For this reason, it is important that brain injury rehabilitation professionals, including occupational therapists, both understand this phenomenon and use assessment and treatment approaches aimed at improving clients' self-awareness. This article provides an overview of self-awareness, reviewing the distinction between intellectual and online awareness. The current role of occupational therapy in the assessment of self-awareness is highlighted and the guidelines for new assessments of self-awareness suitable for use in occupational therapy are explored.
Resumo:
ATP-dependent K+ channels (K-ATP) account for most of the recycling of K+ which enters the proximal tubules cell via Na, K-ATPase. In the mitochondrial membrane, opening of these channels preserves mitochondrial viability and matrix volume during ischemia. We examined KATP channel modulation in renal ischemia-reperfusion injury (IRI), using an isolated perfused rat kidney (IPRK) model, in control, IRI, IRI + 200 muM diazoxide (a K-ATP opener), IRI + 10 muM glibenclamide (a K-ATP blocker) and IRI + 200 muM diazoxide + 10 muM glibenclamide groups. IRI was induced by 2 periods of warm ischemia, followed by 45 min of reperfusion. IRI significantly decreased glomerular filtration rate (GFR) and increased fractional excretion of sodium (FENa) (p < 0.01). Neither diazoxide nor glibenclamide had an effect on control kidney function other than an increase in renal vascular resistance produced by glibenclamide. Pretreatment with 200 muM diazoxide reduced the postischemic increase in FENa (p < 0.05). Adding 10 muM glibenclamide inhibited the diazoxide effect on postischemic FENa (p < 0.01). Histology showed that kidneys pretreated with glibenclamide demonstrated an increase in injure in the thick ascending limb of outer medulla (p < 0.05). Glibenclamide significantly decreased post ischemic renal vascular resistance (p < 0.05). but had no significant effect on other renal function parameters. Our results suggest that sodium reabsorption is improved by K-ATP activation and blockade of K-ATP channels during IRI has an injury enhancing effect on renal epithelial function and histology. This may be mediated through K-ATP modulation in cell and or mitochondrial inner membrane.
Resumo:
Acute renal failure commonly follows reduced renal perfusion or ischemia. Reperfusion is essential for recovery but can itself cause functional and structural injury to the kidney. The separate contributions of ischemia and of reperfusion were examined in the isolated perfused rat kidney. Three groups were studied: brief (5 min) ischemia, 20 min ischemia, and repetitive brief ischemia (4 periods of 5 min) with repetitive intervening reperfusion of 5 min. A control group had no intervention, the three ischemia groups were given a baseline perfusion of 30 min before intervention and all groups were perfused for a total of 80 min. In addition, the effects of exogenous (NO)-N-. from sodium nitroprusside and xanthine oxidase inhibition by allopurinol were assessed in the repetitive brief ischemia-reperfusion model. Brief ischemia produced minimal morphological injury with near normal functional recovery. Repetitive brief ischemia reperfusion caused less functional and morphological injury than an equivalent single period of ischemia (20 min) suggesting that intermittent reperfusion is less injurious than ischemia alone over the time course of study. Pretreatment with allopurinol improved renal function after repetitive brief ischemia-reperfusion compared with the allopurinol-untreated repetitive brief ischemia-reperfusion group. Similarly, sodium nitroprusside reduced renal vascular resistance but did not improve the glomerular filtration rate or sodium reabsorption in the repetitive brief ischemia-reperfusion model. Thus, these studies show that the duration of uninterrupted ischemia is more critical than reperfusion in determining the extent of renal ischemia-reperfusion injury and that allopurinol, in particular, counteracts the oxidative stress of reperfusion.