145 resultados para STRUCTURAL PARAMETERS
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
The effect of number of samples and selection of data for analysis on the calculation of surface motor unit potential (SMUP) size in the statistical method of motor unit number estimates (MUNE) was determined in 10 normal subjects and 10 with amyotrophic lateral sclerosis (ALS). We recorded 500 sequential compound muscle action potentials (CMAPs) at three different stable stimulus intensities (10–50% of maximal CMAP). Estimated mean SMUP sizes were calculated using Poisson statistical assumptions from the variance of 500 sequential CMAP obtained at each stimulus intensity. The results with the 500 data points were compared with smaller subsets from the same data set. The results using a range of 50–80% of the 500 data points were compared with the full 500. The effect of restricting analysis to data between 5–20% of the CMAP and to standard deviation limits was also assessed. No differences in mean SMUP size were found with stimulus intensity or use of different ranges of data. Consistency was improved with a greater sample number. Data within 5% of CMAP size gave both increased consistency and reduced mean SMUP size in many subjects, but excluded valid responses present at that stimulus intensity. These changes were more prominent in ALS patients in whom the presence of isolated SMUP responses was a striking difference from normal subjects. Noise, spurious data, and large SMUP limited the Poisson assumptions. When these factors are considered, consistent statistical MUNE can be calculated from a continuous sequence of data points. A 2 to 2.5 SD or 10% window are reasonable methods of limiting data for analysis. Muscle Nerve 27: 320–331, 2003
Resumo:
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.
Resumo:
We have examined the basis for immunodominant or public TCR usage in an antiviral CTL response. Residues encoded by each of the highly selected genetic elements of an immunodominant clonotype recognizing Epstein-Barr virus were critical to the antigen specificity of the receptor. Upon recognizing antigen the immunodominant TCR undergoes extensive conformational changes in the complementarity determining regions (CDRs), including the disruption of the canonical structures of the germline-encoded CDR1alpha and CDR2alpha loops to produce an enhanced fit with the HLA-peptide complex. TCR ligation induces conformational changes in the TCRalpha constant domain thought to form part of the docking site for CD3epsilon. These findings indicate that TCR immunodominance is associated with structural properties conferring receptor specificity and suggest a novel structural link between TCR ligation and intracellular signaling.
Resumo:
Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.
Resumo:
Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Adiabatic self-heating tests were carried out on five New Zealand coal samples ranging in rank from lignite to high-volatile bituminous. Kinetic parameters of oxidation were obtained front the self-heating curves assuming Arrhenius behaviour. The activation energy E (kJ mol(-1)) and the pre-exponential factor A (s(-1)) were determined in the temperature range of 70-140 degreesC. The activation energy exhibited a definite rank relationship with a minimum E of 55 kJ mol(-1) occurring at a Suggate rank of similar to6.2 corresponding to subbituminous C. Either side of this rank there was a noticeable increase in the activation energy indicating lower reactivity of the coal. A similar rank trend was also observed in the R-70 self-heating rate index values that were taken from the initial portion of the self-heating curve front 40 to 70 degreesC. From these results it is clear that the adiabatic method is capable of providing reliable kinetic parameters of coal oxidation.
Resumo:
Mutations in the E1alpha subunit of the pyruvate dehydrogenase multienzyme complex may result in congenital lactic acidosis, but little is known about the consequences of these mutations at the enzymatic level. Here we characterize two mutants (F205L and T231A) of human pyruvate dehydrogenase in vitro, using the enzyme expressed in Escherichia coli. Wild-type and mutant proteins were purified successfully and their kinetic parameters were measured. F205L shows impaired binding of the thiamin diphosphate cofactor, which may explain why patients carrying this mutation respond to high-dose vitamin B-1 therapy. T231A has very low activity and a greatly elevated K-m for pyruvate, and this combination of effects would be expected to result in severe lactic acidosis. The results lead to a better understanding of the consequences of these mutations on the functional and structural properties of the enzyme, which may lead to improved therapies for patients carrying these mutations.
Resumo:
Based on the hypothesis that limited receptor solubility of lipophilic compounds may result in lower observed permeability parameters, the aim of this study was to determine the in vitro human epidermal permeability coefficients and membrane retention of a series of aliphatic alcohols (C1-C10, log p -0.72 to 4.06) using two different receptor solutions (water and 4% bovine serum albumin in phosphate-buffered saline). Aqueous solutions of radiolabeled alcohols were dosed into the stratum corneum side of membranes mounted in side-by-side glass diffusion cells. Appearance of alcohol in the receptor compartment filled with either of the two solutions was monitored over a 7 h period when both stratum corneum (assessed by tape stripping) and the remaining epidermis levels of radioactivity were determined. In a separate study the degree of binding of alcohols to 4% bovine serum albumin was determined. The data showed increased receptor phase solubility in the bovine serum albumin solution and higher permeability coefficients for the more lipophilic alcohols in the series. No changes were seen in the partitioning of the alcohols from the vehicle into either the stratum corneum or tape-stripped epidermis with the two receptor phases; however, a decrease in the amount of the more lipophilic alcohols partitioning into the water receptor phase from the tape-stripped epidermis was observed. We conclude that bovine serum albumin receptor phase allows better estimation of real permeability parameters for lipophilic compounds due to its increased solubility capacity and we question whether permeability parameters for lipophilic solutes from older data sets based on aqueous receptor phases are completely reliable.
Resumo:
A thorough investigation was performed on the physical (mechanical, thermal, and hydrothermal stability) and chemical (ion exchange capacity and silanol number) characteristics of aluminosilicate FSMs, synthesized via a new successful short-time synthesis route using leached saponite and a low concentration of CTAB. Moreover, the influence of an additional Al incorporation, utilizing different aluminum sources, on the structure of the FSM derived from saponite is studied. A mesoporous aluminosilicate with a low Si/Al ratio of 12.8 is synthesized, and still has a very large surface area of 1130 m(2)/g and pore volume of 0.92 cm(3)/g. The aluminum-containing samples all have a high cation exchange capacity of around 1 mmol/9 while they still have a silanol number of about 0.9 OH/nm(2); both characteristics being interesting for high-yield postsynthesis modification reactions. Finally, a study is performed on the transformation of the aluminosilicates into their Bronsted acid form via the exchange with ammonium ions and a consecutive heat treatment.
Resumo:
Male kids (110) from six goat genotypes, i.e. Boer x Angora (BA), Boer x Feral (1317), Boer x Saanen (BS), Feral x Feral (FF), Saanen x Angora (SA) and Saanen x Feral (SF) and two slaughter weight groups, i.e. Capretto and Chevon (liveweight at slaughter 14-22 and 30-35 kg, respectively) were compared for growth, carcass and meat quality characteristics. Due to their better growth rate, kids from BS and SF genotypes reached the required liveweight for slaughter earlier than kids from other Genotypes used in the study. Chevon kids had a significantly (P < 0.05) lower average daily gain (119 g per day) compared to Capretto kids (171 g per day). SA, SF and FF kids deposited more internal fat in comparison to kids from other genotypes. The dressing percentage of kids ranged from 51 to 54%, with significant differences between genotypes. BS and SF kids had longer carcasses. while BF kids had larger eye muscle area compared to other genotypes. Goat carcasses had a thin subcutaneous fat cover (1.6-2.2 mm). Genotype had a significant (P < 0.05) influence on cooking loss, pigment concentration and muscle colour parameters (CIE L*, a* and b* values). As denoted by the higher V and fibre optic probe values and lower subjective muscle score, the longissimus muscle colour was lighter for BS kids than other genotypes. Cooked meat from the BF kids had lower shear force values and better sensory scores compared to other genotypes. A significant (P < 0.05) decrease in muscle tenderness was observed from Capretto to Chevon carcasses, whereas cooked meat from these two slaughter weight groups was equally accepted (P > 0.05) by the panellists. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Chlorophyll fluorescence measurements have a wide range of applications from basic understanding of photosynthesis functioning to plant environmental stress responses and direct assessments of plant health. The measured signal is the fluorescence intensity (expressed in relative units) and the most meaningful data are derived from the time dependent increase in fluorescence intensity achieved upon application of continuous bright light to a previously dark adapted sample. The fluorescence response changes over time and is termed the Kautsky curve or chlorophyll fluorescence transient. Recently, Strasser and Strasser (1995) formulated a group of fluorescence parameters, called the JIP-test, that quantify the stepwise flow of energy through Photosystem II, using input data from the fluorescence transient. The purpose of this study was to establish relationships between the biochemical reactions occurring in PS II and specific JIP-test parameters. This was approached using isolated systems that facilitated the addition of modifying agents, a PS II electron transport inhibitor, an electron acceptor and an uncoupler, whose effects on PS II activity are well documented in the literature. The alteration to PS II activity caused by each of these compounds could then be monitored through the JIP-test parameters and compared and contrasted with the literature. The known alteration in PS II activity of Chenopodium album atrazine resistant and sensitive biotypes was also used to gauge the effectiveness and sensitivity of the JIP-test. The information gained from the in vitro study was successfully applied to an in situ study. This is the first in a series of four papers. It shows that the trapping parameters of the JIP-test were most affected by illumination and that the reduction in trapping had a run-on effect to inhibit electron transport. When irradiance exposure proceeded to photoinhibition, the electron transport probability parameter was greatly reduced and dissipation significantly increased. These results illustrate the advantage of monitoring a number of fluorescence parameters over the use of just one, which is often the case when the F-V/F-M ratio is used.
Resumo:
Deterioration of concrete or reinforcing steel through excessive contaminant concentration is often the result of repeated wetting and drying cycles. At each cycle, the absorption of water carries new contaminants into the unsaturated concrete. Nuclear Magnetic Resonance (NMR) is used with large concrete samples to observe the shape of the wetting profile during a simple one-dimensional wetting process. The absorption of water by dry concrete is modelled by a nonlinear diffusion equation with the unsaturated hydraulic diffusivity being a strongly nonlinear function of the moisture content. Exponential and power functions are used for the hydraulic diffusivity and corresponding solutions of the diffusion equation adequately predict the shape of the experimental wetting profile. The shape parameters, describing the wetting profile, vary little between different blends and are relatively insensitive to subsequent re-wetting experiments allowing universal parameters to be suggested for these concretes.
Resumo:
This paper conducts a dynamic stability analysis of symmetrically laminated FGM rectangular plates with general out-of-plane supporting conditions, subjected to a uniaxial periodic in-plane load and undergoing uniform temperature change. Theoretical formulations are based on Reddy's third-order shear deformation plate theory, and account for the temperature dependence of material properties. A semi-analytical Galerkin-differential quadrature approach is employed to convert the governing equations into a linear system of Mathieu-Hill equations from which the boundary points on the unstable regions are determined by Bolotin's method. Free vibration and bifurcation buckling are also discussed as subset problems. Numerical results are presented in both dimensionless tabular and graphical forms for laminated plates with FGM layers made of silicon nitride and stainless steel. The influences of various parameters such as material composition, layer thickness ratio, temperature change, static load level, boundary constraints on the dynamic stability, buckling and vibration frequencies are examined in detail through parametric studies.