207 resultados para Revonsuo, Antti: Inner presence: Consciousness as a biological phenomenon
Resumo:
The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.
Resumo:
Numerous studies on the relationship between the structure and function of peptide agonists derived from the biologically active, C-terminal region of human C5a anaphylatoxin have been reported over the past decade. These studies have been performed with the objective of parlaying this structure-function information into the design of peptide/peptidomimetic modulators of C5a receptor (C5aR)-mediated function. In this review, we describe a rational approach for the development of conformationally biased, decapeptide agonists of C5a and described how these stabilized and specific conformational features relate to the expression of specific C5a-like activities in vitro and in vivo. The therapeutic potential of such response-selective C5a agonists is discussed and underscored by the results of one such response-selective C5a agonist that was used in vivo as an effective molecular adjuvant capable of generating antigen-specific humoral and cellular immune responses. Finally, we describe the synthesis of a new generation of highly response-selective, conformationally biased C5a agonist and discuss the in vitro and in vivo biologic results that so indicate this biologic selectivity.
Resumo:
1. Eight human cytochrome P4501B1 (CYP1B1) allelic variants, namely Arg(48)Ala(119)Leu(432), Arg(48)Ala(119)Val(432), Gly(48)Ala(119)Leu(432), Gly(48)Ala(119)Val(432), Arg(48)Ser(119)Leu(432), Arg(48)Ser(119)Val(432), Gly(48)Ser(119)Leu(432) and Gly(48)Ser(119)Val(432) (all with Asn(453)), were expressed in Escherichia coli together with human NADPH-P450 reductase and their catalytic specificities towards oxidation of 17 beta -oestradiol and benzo[a]pyrene were determined. 2. All of the CYP1B1 variants expressed in bacterial membranes showed Fe2+. CO versus Fe2+ difference spectra with wavelength maxima at 446 nm and they reacted with antibodies raised against recombinant human CYP1B1 in immunoblots. The ratio of expression of the reductase to CYP1B1 in these eight preparations ranged from 0.2 to 0.5. 3. CYP1B1 Arg(48) variants tended to have higher activities for 17 beta -oestradiol 4-hydroxylation than Gly(48) variants, although there were no significant variations in 17 beta -oestradiol 2-hydroxylation activity in these eight CYP1B1 variants. Interestingly, ratios of formation of 17 beta -oestradiol 4-hydroxylation to 2-hydroxylation by these CYP1B1 variants were higher in all of the Val(432) forms than the corresponding Leu(432) forms. 4. In contrast, Leu(432) forms of CYP1B1 showed higher rates of oxidation of benzo[a]pyrene (to the 7, 8-dihydoxy-7,8-dihydrodiol in the presence of epoxide hydrolase) than did the Val(432) forms. 5. These results suggest that polymorphic human CYP1B1 variants may cause some altered catalytic specificity with 17 beta -oestradiol and benzo[a]pyrene and may influence susceptibilities of individuals towards endogenous and exogenous carcinogens.
Resumo:
Inhibition of programmed cell death of motoneurons during embryonic development requires the presence of their target muscle and coincides with the initial stages of synaptogenesis. To evaluate the role of synapse formation on motoneuron survival during embryonic development, we counted the number of motoneurons in rapsyn-deficient mice. RaDsyn is a 43 kDa protein needed for the formation of postsynaptic specialisations at vertebrate neuromuscular synapses. Here we show that the rapsyn-deficient mice have a significant increase in the number of motoneurons in the brachial lateral motor column during the period of naturally occurring programmed cell death compared to their wild-type littermates. In addition, we observed an increase in intramuscular axonal branching in the rapsyn-deficient diaphragms compared to their wild-type littermates at embryonic day 18.5. These results suggest that deficits in the formation of the postsynaptic specialisation at the neuromuscular synapse, brought about by the absence of rapsyn, are sufficient to induce increases in both axonal branching and the survival of the innervating motoneuron. Moreover, these results support the idea that skeletal muscle activity through effective synaptic transmission and intramuscular axonal branching are major mechanisms that regulate motoneuron survival during development. (C) 2001 Wiley-Liss, Inc.
Resumo:
E-cadherin is a major adherens junction protein of epithelial cells, with a central role in cell-cell adhesion and cell polarity. Newly synthesized E-cadherin is targeted to the basolateral cell surface, We analyzed targeting information in the cytoplasmic tail of E-cadherin by utilizing chimeras of E-cadherin fused to the ectodo- main of the interleukin-2 alpha (IL-2 alpha) receptor expressed in Madin-Darby canine kidney and LLC-PK1 epithelial cells, Chimeras containing the full-length or membrane-proximal half of the E-cadherin cytoplasmic tail were correctly targeted to the basolateral domain. Sequence analysis of the membrane-proximal tail region revealed the presence of a highly conserved dileucine motif, which was analyzed as a putative targeting signal by mutagenesis. Elimination of this motif resulted in the loss of Tac/E-cadherin basolateral localization, pinpointing this dileucine signal as being both necessary and sufficient for basolateral targeting of E-cadherin, Truncation mutants unable to bind beta -catenin were correctly targeted, showing, contrary to current understanding, that beta -catenin is not required for basolateral trafficking. Our results also provide evidence that dileucine mediated targeting is maintained in UC-PK, cells despite the altered polarity of basolateral proteins with tyrosine-based signals in this cell line, These results provide the first direct insights into how E-cadherin is targeted to the basolateral membrane.
Resumo:
This study compared the effects of zinc and odorants on the voltage-gated K+ channel of rat olfactory neurons. Zinc reduced current magnitude, depolarized the voltage activation curve and slowed activation kinetics without affecting inactivation or deactivation kinetics. Zinc inhibition was potentiated by the NO compound, S-nitroso-cysteine. The pH- and diethylpyrocarbonate-dependence of zinc inhibition suggested that zinc acted by binding to histidine residues. Cysteine residues were eliminated as contributing to the zinc-binding site. The odorants, acetophenone and amyl acetate, also reduced current magnitude, depolarized the voltage activation curve and selectively slowed activation kinetics. Furthermore, the diethylpyrocarbonate- and pH-dependence of odorant inhibition implied that the odorants also bind to histidine residues. Zinc inhibitory potency was dramatically diminished in the presence of odorants, implying competition for a common binding site. These observations indicate that the odorants and zinc share a common inhibitory binding site on the external surface of the voltage-gated K+ channel.
A highly conserved c-fms gene intronic element controls macrophage-specific and regulated expression
Resumo:
The c fins gene encodes the receptor for macrophage colony-stimulating factor-1. This gene is expressed selectively in the macrophage cell lineage. Previous studies have implicated sequences in intron 2 that control transcript elongation in tissue-specific and regulated expression of c -fms. Four macrophage-specific deoxyribonuclease I (DNase I)-hypersensitive sites (DHSS) were identified within mouse intron 2. Sequences of these DHSS were found to be highly conserved compared with those in the human gene. A 250-bp region we refer to as the fins intronic regulatory element (FIRE), which is even more highly conserved than the c-fins proximal promoter, contains many consensus binding sites for macrophage-expressed transcription factors including Spl, PU.1, and C/EBP. FIRE was found to act as a macrophage-specific enhancer and as a promoter with an antisense orientation preference in transient transfections. In stable transfections of the macrophage line RAW264, as well as in clones selected for high and low-level c -fms mRNA expression, the presence of intron 2 increased the frequency and level of expression of reporter genes compared with those attained using the promoter alone. Removal of FIRE abolished reporter gene expression, revealing a suppressive activity in the remaining intronic sequences. Hence, FIRE is shown to be a key regulatory element in the fins gene.
Resumo:
Marsupial pregnancy differs from that in eutherians in duration, placentation and hormonal profile so much so that maternal recognition of pregnancy may not occur in polyovular marsupials. However, a comparison of gravid and non-gravid uteri reveals differences indicative of histological and physiological adaptations to pregnancy. In the present study, the hypothesis that embryo-maternal signalling occurs in polyovular marsupials was tested by examining serum from non-pregnant and pregnant Sminthopsis macroura for the presence of early pregnancy factor (EPF), a serum protein secreted by the ovary in response to the presence of a newly fertilized egg in the oviduct. EPF is detectable in the serum of pregnant, but not in non-pregnant, females in all eutherians studied to date. In the present study, EPF was detected in S. macroura serum by the rosette inhibition test during the first 9 days of the 10.7 day gestation period in this marsupial. However, EPF was not detected on day 10, just before parturition, or in non-pregnant or preovulatory animals. Immunohistochemical analysis of ovaries from gravid and non-gravid animals demonstrates that EPF is found in the capillaries, interstitial spaces and secretory cells of the corpus luteum. It is concluded that the spatiotemporal pattern of EPF activity described strongly indicates that maternal recognition of pregnancy in marsupials is mediated, at least in part, by EPF. Because the endocrinological milieu is the same in pregnant and non-pregnant marsupials, the possibility of using marsupials as an experimental system for studying EPF function unconfounded by hormonal effects is presented.
Resumo:
Hsp10 (10-kDa heat shock protein, also known as chaperonin 10 or Cpn10) is a co-chaperone for Hsp60 in the protein folding process. This protein has also been shown to be identical to the early pregnancy factor, which is an immunosuppressive growth factor found in maternal serum. In this study we have used immunogold electron microscopy to study the subcellular localization of Hsp10 in rat tissues sections embedded in LR Gold resin employing polyclonal antibodies raised against different regions of human Hsp10. In all rat tissues examined including liver, heart, pancreas, kidney, anterior pituitary, salivary gland, thyroid, and adrenal gland, antibodies to Hsp10 showed strong labeling of mitochondria. However, in a number of tissues, in addition to the mitochondrial labeling, strong and highly specific labeling with the Hsp10 antibodies was also observed in several extramitochondrial compartments. These sites included zymogen granules in pancreatic acinar cells, growth hormone granules in anterior pituitary, and secretory granules in PP pancreatic islet cells. Additionally, the mature red blood cells which lack mitochondria, also showed strong reactivity with the Hsp10 antibodies. The observed labeling with the Hsp10 antibodies, both within mitochondria as well as in other compartments/cells, was abolished upon omission of the primary antibodies or upon preadsorption of the primary antibodies with the purified recombinant human Hsp10. These results provide evidence that similar to a number of other recently described mitochondrial proteins (viz., Hsp60, tumor necrosis factor receptor-associated protein- 1, P32 (gC1q-R) protein, and cytochrome c), Hsp10 is also found at a variety of specific extramitochondrial sites in normal rat tissue. These results raise important questions as to how these mitochondrial proteins are translocated to other compartments and their possible function(s) at these sites. The presence of these proteins at extramitochondrial sites in normal tissues has important implications concerning the role of mitochondria in apoptosis and genetic diseases.
Resumo:
Insulin stimulates glucose transport in adipocytes and muscle cells by triggering redistribution of the GLUT4 glucose transporter from an intracellular perinuclear location to the cell surface. Recent reports have shown that the microtubule-depolymerizing agent nocodazole inhibits insulin-stimulated glucose transport, implicating an important role for microtubules in this process. In the present study we show that 2 mum nocodazole completely depolymerized microtubules in 3T3-L1 adipocytes, as determined morphologically and biochemically, resulting in dispersal of the perinuclear GLUT4 compartment and the Golgi apparatus. However, 2 mum nocodazole did not significantly effect either the kinetics or magnitude of insulin-stimulated glucose transport. Consistent with previous studies, higher concentrations of nocodazole (10-33 mum) significantly inhibited basal and insulin-stimulated glucose uptake in adi. pocytes. This effect was not likely the result of microtubule depolymerization because in the presence of taxol, which blocked nocodazole-induced depolymerization of microtubules as well as the dispersal of the perinuclear GLUT4 compartment, the inhibitory effect of 10-33 muM nocodazole on insulin-stimulated glucose uptake prevailed. Despite the decrease in insulin-stimulated glucose transport with 33 muM nocodazole we did not observe inhibition of insulin-stimulated GLUT4 translocation to the cell surface under these conditions. Consistent with a direct effect of nocodazole on glucose transporter function we observed a rapid inhibitory effect of nocodazole on glucose transport activity when added to either 3T3-L1 adipocytes or to Chinese hamster ovary cells at 4 degreesC. These studies reveal a new and unexpected effect of nocodazole in mammalian cells which appears to occur independently of its microtubule-depolymerizing effects.
Resumo:
In the treatment of atherosclerotic disease, stenting in the presence of a glycoprotein (GP) IIb/IIIa antagonist is becoming an increasingly common procedure. The ‘Do Tirofiban and ReoPro Give Similar Efficacy Trial’ (TARGET) was designed to determine whether the cheaper tirofiban was as effective and safe as abciximab in the prevention of ischaemic events with stenting. Unexpectedly, abciximab was shown to be superior to tirofiban. Tirofiban is a selective GP IIb/IIIa antagonist whereas abciximab has additional anti-inflammatory actions, which may contribute to its superiority.
Resumo:
The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A laboratory scale sequencing batch reactor (SBR) operating for enhanced biological phosphorus removal (EBPR) and fed with a mixture of volatile fatty acids (VFAs) showed stable and efficient EBPR capacity over a four-year-period. Phosphorus (P), poly-beta-hydroxyalkanoate (PHA) and glycogen cycling consistent with classical anaerobic/aerobic EBPR were demonstrated with the order of anaerobic VFA uptake being propionate, acetate then butyrate. The SBR was operated without pH control and 63.67+/-13.86 mg P l(-1) was released anaerobically. The P% of the sludge fluctuated between 6% and 10% over the operating period (average of 8.04+/-1.31%). Four main morphological types of floc-forming bacteria were observed in the sludge during one year of in-tensive microscopic observation. Two of them were mainly responsible for anaerobic/aerobic P and PHA transformations. Fluorescence in situ hybridization (FISH) and post-FISH chemical staining for intracellular polyphosphate and PHA were used to determine that 'Candidatus Accumulibacter phosphatis' was the most abundant polyphosphate accumulating organism (PAO), forming large clusters of coccobacilli (1.0-1.5 mum) and comprising 53% of the sludge bacteria. Also by these methods, large coccobacillus-shaped gammaproteobacteria (2.5-3.5 mum) from a recently described novel cluster were glycogen-accumulating organisms (GAOs) comprising 13% of the bacteria. Tetrad-forming organisms (TFOs) consistent with the 'G bacterium' morphotype were alphaproteobacteria , but not Amaricoccus spp., and comprised 25% of all bacteria. According to chemical staining, TFOs were occasionally able to store PHA anaerobically and utilize it aerobically.
Resumo:
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta(1)), and interleukin (IL-1beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta(1), separately and in combination, in the prolonged presence of IL-1beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta(1) and decreased levels in response to IL-1beta. The effect of IL-1beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta(1), separately or in combination, in the presence of IL-1beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta(1) or IL-1beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta(1) on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.