171 resultados para Production spatial circuit


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the past century, the debate over whether or not density-dependent factors regulate populations has generally focused on changes in mean population density, ignoring the spatial variance around the mean as unimportant noise. In an attempt to provide a different framework for understanding population dynamics based on individual fitness, this paper discusses the crucial role of spatial variability itself on the stability of insect populations. The advantages of this method are the following: (1) it is founded on evolutionary principles rather than post hoc assumptions; (2) it erects hypotheses that can be tested; and (3) it links disparate ecological schools, including spatial dynamics, behavioral ecology, preference-performance, and plant apparency into an overall framework. At the core of this framework, habitat complexity governs insect spatial variance. which in turn determines population stability. First, the minimum risk distribution (MRD) is defined as the spatial distribution of individuals that results in the minimum number of premature deaths in a population given the distribution of mortality risk in the habitat (and, therefore, leading to maximized population growth). The greater the divergence of actual spatial patterns of individuals from the MRD, the greater the reduction of population growth and size from high, unstable levels. Then, based on extensive data from 29 populations of the processionary caterpillar, Ochrogaster lunifer, four steps are used to test the effect of habitat interference on population growth rates. (1) The costs (increasing the risk of scramble competition) and benefits (decreasing the risk of inverse density-dependent predation) of egg and larval aggregation are quantified. (2) These costs and benefits, along with the distribution of resources, are used to construct the MRD for each habitat. (3) The MRD is used as a benchmark against which the actual spatial pattern of individuals is compared. The degree of divergence of the actual spatial pattern from the MRD is quantified for each of the 29 habitats. (4) Finally, indices of habitat complexity are used to provide highly accurate predictions of spatial divergence from the MRD, showing that habitat interference reduces population growth rates from high, unstable levels. The reason for the divergence appears to be that high levels of background vegetation (vegetation other than host plants) interfere with female host-searching behavior. This leads to a spatial distribution of egg batches with high mortality risk, and therefore lower population growth. Knowledge of the MRD in other species should be a highly effective means of predicting trends in population dynamics. Species with high divergence between their actual spatial distribution and their MRD may display relatively stable dynamics at low population levels. In contrast, species with low divergence should experience high levels of intragenerational population growth leading to frequent habitat-wide outbreaks and unstable dynamics in the long term. Six hypotheses, erected under the framework of spatial interference, are discussed, and future tests are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of cropping systems simulation capabilities world-wide combined with easy access to powerful computing has resulted in a plethora of agricultural models and consequently, model applications. Nonetheless, the scientific credibility of such applications and their relevance to farming practice is still being questioned. Our objective in this paper is to highlight some of the model applications from which benefits for farmers were or could be obtained via changed agricultural practice or policy. Changed on-farm practice due to the direct contribution of modelling, while keenly sought after, may in some cases be less achievable than a contribution via agricultural policies. This paper is intended to give some guidance for future model applications. It is not a comprehensive review of model applications, nor is it intended to discuss modelling in the context of social science or extension policy. Rather, we take snapshots around the globe to 'take stock' and to demonstrate that well-defined financial and environmental benefits can be obtained on-farm from the use of models. We highlight the importance of 'relevance' and hence the importance of true partnerships between all stakeholders (farmer, scientists, advisers) for the successful development and adoption of simulation approaches. Specifically, we address some key points that are essential for successful model applications such as: (1) issues to be addressed must be neither trivial nor obvious; (2) a modelling approach must reduce complexity rather than proliferate choices in order to aid the decision-making process (3) the cropping systems must be sufficiently flexible to allow management interventions based on insights gained from models. The pro and cons of normative approaches (e.g. decision support software that can reach a wide audience quickly but are often poorly contextualized for any individual client) versus model applications within the context of an individual client's situation will also be discussed. We suggest that a tandem approach is necessary whereby the latter is used in the early stages of model application for confidence building amongst client groups. This paper focuses on five specific regions that differ fundamentally in terms of environment and socio-economic structure and hence in their requirements for successful model applications. Specifically, we will give examples from Australia and South America (high climatic variability, large areas, low input, technologically advanced); Africa (high climatic variability, small areas, low input, subsistence agriculture); India (high climatic variability, small areas, medium level inputs, technologically progressing; and Europe (relatively low climatic variability, small areas, high input, technologically advanced). The contrast between Australia and Europe will further demonstrate how successful model applications are strongly influenced by the policy framework within which producers operate. We suggest that this might eventually lead to better adoption of fully integrated systems approaches and result in the development of resilient farming systems that are in tune with current climatic conditions and are adaptable to biophysical and socioeconomic variability and change. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a rainfall simulator developed for field and laboratory studies that gives great flexibility in plot size covered, that is highly portable and able to be used on steep slopes, and that is economical in its water use. The simulator uses Veejet 80100 nozzles mounted on a manifold, with the nozzles controlled to sweep to and from across a plot width of 1.5 m. Effective rainfall intensity is controlled by the frequency with which the nozzles sweep. Spatial uniformity of rainfall on the plots is high, with coefficients of variation (CV) on the body of the plot being 8-10%. Use of the simulator for erosion and infiltration measurements is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A numerical modelling strategy has been developed in order to quantify the magnitude of induced stresses at the boundaries of production level and undercut level drifts for various in situ stress environments and undercut scenarios. The results of the stress modelling were in line with qualitative experiential guidelines and a limited number of induced stress measurements documented from caving sites. A number of stress charts were developed which quantify the maximum boundary stresses in drift roofs for varying in situ stress regimes, depths and undercut scenarios. This enabled many of the experiential guidelines to be quantified and bounded. A limited number of case histories of support and support performance in cave mine drifts were compared to support recommendations using the NGI classification system, The stress charts were used to estimate the Stress Reduction Factor for this system. The back-analyses suggested that the NGI classification system might be able to give preliminary estimates of support requirements in caving mines with modifications relating to rock bolt length and the support of production level intersections. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor. integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations. 2 ranging from 23-1.153 mg chl a m(2), were classified into low, medium, and high concentration classes (1-170, 171-290, and > 291 mg chl a m(-2)) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale ( > 1 km 2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic Microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef. and thus contribute significantly to total primary productivity on the reef.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Eucalyptus savannas on low nutrient soils are being extensively cleared in Queensland. In this paper we provide background information relevant to understanding nutrient (particularly nitrogen) dynamics in sub/tropical savanna, and review the available evidence relevant to understanding the potential impact of clearing Eucalyptus savanna on nutrient relations. The limited evidence presently available can be used to argue for the extreme positions that: (i) woody vegetation competes with grasses Cor resources. and tree/shrub clearing improves pasture production, (ii) woody vegetation benefits pasture production. At present, the lack of fundamental knowledge about Australian savanna nutrient relations makes accurate predictions about medium- and long-term effects of clearing on nutrient relations in low nutrient savannas difficult. The future of cleared savannas will differ if herbaceous species maintain all functions that woody vegetation has previously held, or if woody species have functions distinct from those of herbaceous vegetation. Research suggests that savanna soils are susceptible to nitrate leaching, and that trees improve the nutrient status of savanna soils in some situations. The nitrogen capital of cleared savanna is at risk if mobile ions are not captured efficiently by the vegetation. and nitrogen input via N-2 fixation from vegetation and microbiotic crusts is reduced. In order to predict clearing effects on savanna nutrient relations, research should be directed to answering (i) how open or closed nutrient cycles are in natural and cleared savanna, (ii) which functions are performed by savanna constituents such as woody and herbaceous vegetation, native and exotic plant species. termites, and microbiotic 7 crusts in relation to nutrient cycles. In the absence of detailed knowledge about savanna functioning, clearing carries the risk of promoting continuous nutrient depiction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We cloned the complete complementary DNA of an isolate of the hepatitis C virus, HCV-S1, into a tetra cycline-inducible expression vector and stably transfected it into two human hepatoma cell lines, Huh7 and HepG2. Twenty-six Huh7 and two HepG2-positive clones were obtained after preliminary screening. Two Huh7 (SH-7 and -9) and one HepG2 (G-19) clones were chosen for further characterisation. Expression of HCV proteins in these cells accumulated from 6 In to 4 days posttreatment. Full-length viral plus-strand RNA was detected by Northern analyses. Using RT-PCR and ribonuclease protection assay, we also detected the synthesis of minus-strand HCV RNA. Plus- and minus-strand viral RNA was still detected after treatment with actinomycin D. Indirect immunofluorescence staining with anti-E2, NS4B, and NS5A revealed that these proteins were mostly localised to the endoplasmic reticulum (ER). Culture media from tet-induced SH-9 cells was separated on sucrose density gradients and analysed for the presence of HCV RNA. Viral RNA levels peaked at two separate ranges, one with a buoyant density of 1.08 g/ml and another from 1.17 to 1.39 g/ml. Electron microscopy demonstrated the presence of subviral-like particles (approximately 20-25 nm in diameter) in the cytoplasm of SH-9 and G-19 cells, which were positively labelled by anti-HCV core antibodies. Anti-E2 antibodies strongly labelled cytoplasmic vesicular structures and some viral-like particles. Complete viral particles of about 50 nm which reacted with anti-E2 antibodies were observed in the culture media of tet-induced SH-9 cells following negative staining. Supernatant from tet-treated SH-9 cells was found to infect naive Huh7 and stable Huh7-human CD81 cells. (C) 2002 Elsevier Science (USA).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.