160 resultados para Other Physics Topics
Resumo:
This paper deals with atomic systems coupled to a structured reservoir of quantum EM field modes, with particular relevance to atoms interacting with the field in photonic band gap materials. The case of high Q cavities has been treated elsewhere using Fano diagonalization based on a quasimode approach, showing that the cavity quasimodes are responsible for pseudomodes introduced to treat non-Markovian behaviour. The paper considers a simple model of a photonic band gap case, where the spatially dependent permittivity consists of a constant term plus a small spatially periodic term that leads to a narrow band gap in the spectrum of mode frequencies. Most treatments of photonic band gap materials are based on the true modes, obtained numerically by solving the Helmholtz equation for the actual spatially periodic permittivity. Here the field modes are first treated in terms of a simpler quasimode approach, in which the quasimodes are plane waves associated with the constant permittivity term. Couplings between the quasimodes occur owing to the small periodic term in the permittivity, with selection rules for the coupled modes being related to the reciprocal lattice vectors. This produces a field Hamiltonian in quasimode form. A matrix diagonalization method may be applied to relate true mode annihilation operators to those for quasimodes. The atomic transitions are coupled to all the quasimodes, and the true mode atom-EM field coupling constants (one-photon Rabi frequencies) are related to those for the quasimodes and also expressions are obtained for the true mode density. The results for the one-photon Rabi frequencies differ from those assumed in other work. Expressions for atomic decay rates are obtained using the Fermi Golden rule, although these are valid only well away from the band gaps.
Resumo:
We consider the possibility that the electrons injected into organic field-effect transistors are strongly correlated. A single layer of acenes can be modeled by a Hubbard Hamiltonian similar to that used for the κ-(BEDT-TTF)2X family of organic superconductors. The injected electrons do not necessarily undergo a transition to a Mott insulator state as they would in bulk crystals when the system is half-filled. We calculate the fillings needed for obtaining insulating states in the framework of the slave-boson theory and in the limit of large Hubbard repulsion U. We also suggest that these Mott states are unstable above some critical interlayer coupling or long-range Coulomb interaction.
Resumo:
We compare two different approaches to the control of the dynamics of a continuously monitored open quantum system. The first is Markovian feedback, as introduced in quantum optics by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)]. The second is feedback based on an estimate of the system state, developed recently by Doherty and Jacobs [Phys. Rev. A 60, 2700 (1999)]. Here we choose to call it, for brevity, Bayesian feedback. For systems with nonlinear dynamics, we expect these two methods of feedback control to give markedly different results. The simplest possible nonlinear system is a driven and damped two-level atom, so we choose this as our model system. The monitoring is taken to be homodyne detection of the atomic fluorescence, and the control is by modulating the driving. The aim of the feedback in both cases is to stabilize the internal state of the atom as close as possible to an arbitrarily chosen pure state, in the presence of inefficient detection and other forms of decoherence. Our results (obtained without recourse to stochastic simulations) prove that Bayesian feedback is never inferior, and is usually superior, to Markovian feedback. However, it would be far more difficult to implement than Markovian feedback and it loses its superiority when obvious simplifying approximations are made. It is thus not clear which form of feedback would be better in the face of inevitable experimental imperfections.
Resumo:
We investigate the influence of a single-mode cavity on the Autler-Townes doublet that arises when a three-level atom is strongly driven by a laser field tuned to one of the atomic transitions and probed by a tunable, weak field coupled to the other transition. We assume that the cavity mode is coupled to the driven transition and the cavity and laser frequencies are equal to the atomic transition frequency. We find that the Autler-Townes spectrum can have one, two or three peaks depending on the relative magnitudes of the Rabi frequencies of the cavity and driving fields. We show that, in order to understand the three-peaked spectrum, it is necessary to go beyond the secular approximation, leading to interesting quantum interference effects. We find that the positions and relative intensities of the three spectral components are affected strongly by the atom-cavity coupling strength g and the cavity damping K. For an increasing g and/or decreasing K the triplet evolves into a single peak. This results in 'undressing' of the system such that the atom collapses into its ground state. We interpret the spectral features in terms of the semiclassical dressed-atom model, and also provide complementary views of the cavity effects in terms of quantum Langevin equations and the fully quantized, 'double -dressing' model.
Resumo:
In this paper we investigate the quantum optics of a double-ended optical cavity. We show that an impedance matched, far-detuned cavity can be used to separate the positive and negative sidebands of a field. The 'missing' sideband will be replaced by the equivalent sideband incident on the cavity from the other direction. This technique can be used to convert the quantum correlations between the sidebands of the incident fields into quantum correlations between the two spatially distinct output fields. We show that, under certain experimental conditions, the fields emerging from the cavity will display entanglement.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
We study, with exact diagonalization, the zero temperature properties of the quarter-filled extended Hubbard model on a square lattice. We find that increasing the ratio of the intersite Coulomb repulsion, V, to the bandwidth drives the system from a metal to a charge ordered insulator. The evolution of the optical conductivity spectrum with increasing V is in agreement with the observed optical conductivity of several layered molecular crystals with the theta and beta crystal structures.
Resumo:
As a function of temperature, the layered compound K2Na[Ag(CN)213 displays dramatic variations in luminescence thermochromism with major trend changes occurring around 80 K. In order to understand these interesting optical properties, high-resolution neutron diffraction investigations were performed on a polycrystalline sample of this material in the temperature range from 1.5 to 300 K, and previous synchrotron X-ray data of Larochelle et al. (Solid State Commun. 114, 155 (2000)) were reinterpreted. The corresponding significant structural changes were found to be continuous with an anomalous increase of the monoclinic c-lattice parameter with decreasing temperature, associated with slight reorientations of two inequivalent, approximately linear N-C-Ag-C-N units. In the whole temperature range, the crystal structure is monoclinic with the space group C2/m. Based on the structural results, the major luminescence thermochromism changes around 80 K are attributed to the dominance of a back energy transfer process from low- to high-energy excitons at high temperatures. (E) 2002 Elsevier Science (USA).
Resumo:
l-(BETS)2FeCl4 undergoes transitions from an antiferromagnetic insulator to a metal and then to a superconductor as a magnetic field is increased. We use a Hubbard-Kondo model to clarify the role of the Fe31 magnetic ions in these phase transitions. In the high-field regime, the magnetic field acting on the electron spins is compensated by the exchange field He due to the magnetic ions. We show how He can be extracted from the observed splitting of the Shubnikov–de Haas frequencies. We predict the field range for field-induced superconductivity in other materials.
Resumo:
Radical formation in ultem following gamma-radiolysis has been reassessed, and the G(R*) values at different temperatures have been determined by ESR spectroscopy. The radical assignment and radical reactivity have been re-examined by photobleaching and thermal annealing studies. Photobleachable radical anions were found to comprise approximate to40% of the total number of radicals formed on radiolysis at 77 K. Spectral subtraction methods, ESR spectral simulations, measurement of g-values and the hyperfine splitting constants were used to identify the other radical intermediates. The principal chain scission radicals are formed due to scission of the main-chain at (i) the ether linkage, (ii) the isopropylidene group and (iii) the imide ring in the main chain. The side chain methyl groups of the isopropylidine units also lose hydrogen to form methylene radicals. The five-line spectrum observed to decay in the temperature range 370-430 K, which has not been assigned previously, has been identified as being characteristic of a di-substituted benzyl radical. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Complex chemical reactions in the gas phase can be decomposed into a network of elementary (e.g., unimolecular and bimolecular) steps which may involve multiple reactant channels, multiple intermediates, and multiple products. The modeling of such reactions involves describing the molecular species and their transformation by reaction at a detailed level. Here we focus on a detailed modeling of the C(P-3)+allene (C3H4) reaction, for which molecular beam experiments and theoretical calculations have previously been performed. In our previous calculations, product branching ratios for a nonrotating isomerizing unimolecular system were predicted. We extend the previous calculations to predict absolute unimolecular rate coefficients and branching ratios using microcanonical variational transition state theory (mu-VTST) with full energy and angular momentum resolution. Our calculation of the initial capture rate is facilitated by systematic ab initio potential energy surface calculations that describe the interaction potential between carbon and allene as a function of the angle of attack. Furthermore, the chemical kinetic scheme is enhanced to explicitly treat the entrance channels in terms of a predicted overall input flux and also to allow for the possibility of redissociation via the entrance channels. Thus, the computation of total bimolecular reaction rates and partial capture rates is now possible. (C) 2002 American Institute of Physics.
Resumo:
We model the behavior of an ion trap with all ions driven simultaneously and coupled collectively to a heat bath. The equations for this system are similar to the irreversible dynamics of a collective angular momentum system known as the Dicke model. We show how the steady state of the ion trap as a dissipative many-body system driven far from equilibrium can exhibit quantum entanglement. We calculate the entanglement of this steady state for two ions in the trap and in the case of more than two ions we calculate the entanglement between two ions by tracing over all the other ions. The entanglement in the steady state is a maximum for the parameter values corresponding roughly to a bifurcation of a fixed point in the corresponding semiclassical dynamics. We conjecture that this is a general mechanism for entanglement creation in driven dissipative quantum systems.