226 resultados para NMR CHEMICAL-SHIFTS
Resumo:
Coating anatase TiO2 onto three different particle supports, activated carbon (AC), gamma -alumina (Al2O3) and silica gel (SiO2), by chemical vapor deposition (CVD) was studied. The effect of the CVD synthesis conditions on the loading rate of anatase TiO2 was investigated. It was found that introducing water vapor during CVD or adsorbing water before CVD was crucial to obtain anatase TiO2 on the surface of the particle supports. The evaporation temperature of precursor, deposition temperature in the reactor, flow rate of carrier gas, and the length of coating time were also important parameters to obtain more uniform and repeatable TiO2 coating. High inflow precursor concentration, high CVD reactor temperature and long coating time tended to cause block problem. Coating TiO2 onto small particles by CVD involved both chemical vapor deposition and particle deposition. It was believed that the latter was the reason for the block problem. In addition, the mechanism of CVD process in this study included two parts, pyrolysis and hydrolysis, and one of them was dominant in the CVD process under different synthesis route. Among the three types of materials, silica gel, with higher surface hydroxyl groups and macropore surface area, was found to be the most efficient support in terms of both anatase TiO2 coating and photocatalytic reaction. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The reactions of mercury(II) with the mixed donor encapsulating ligands 3,6,16-trithia-6,11,19-triazabicyclo[6.6.6]icosane (AMN(3)S(3)sar) and 1-amino-8-methyl-6,19-dithia-3,10,13,16-tetraazabicyclo[6.6.6]icosane (AMN(4)S(2)sar) have been studied. NMR ligand-ligand competition experiments with the ligands 1,4,8,11-tetraazaeyclotetradecane ([14]aneN(4)), 1-thia-4,7,10-triazacyclododecane ([12]aneN(3)S) and ethylenediaminetetraacetic acid (EDTA) with AMN(3)S(3)sar and Hg(II) indicated that [14]aneN(4) would be an appropriate competing ligand for the, determination of the Hg(II) stability constant. Calculations indicated the ratio of concentrations of AMN3S3sar, [14]aneN(4) and Hg(II) required for the determination of the stability constant ranged from 1:1:1 to 1:5:1. Refinement of the titration curves yielded log(10)K[Hg(AMN(3)S(3)sar)](2+) = 17.7. A similar competition titration resulted in the determination of the stability constant for the AMN(4)S(2)sar system as log(10)K[Hg(AMN(4)S(2)sar)](2+) = 19.5. The observed binding constants for the mixed N/S donor systems and the hexaaza analogues sar (3,6,10,13,16,19-hexaazabicyclo [6.6.6]icosane) and diamsar (1,8-diamino-3,6,10,13,16,19 -hexazabicyclo [6.6.6] icosane (log(10)K-[Hg(diamsar)](2+) = 26.4; log(10)K[Hg(sar)](2+) = 28.1) differ by approximately ten orders of magnitude. The difference is ascribed not to a cryptate effect but to a mismatch in the Hg-N and Hg-S bond lengths in the N/S systems.
Resumo:
A method involving bubbling of air through a fibrous filter immersed in water has recently been investigated (Agranovski et al. [1]). Experimental results showed that the removal efficiency for ultra-fine aerosols by such filters was greatly increased compared to dry filters. Nuclear Magnetic Resonance (NMR) imaging was used to examine the wet filter and to determine the nature of the gas flow inside the filter (Agranovski et al. [2]). It was found that tortuous preferential pathways (or flow tubes) develop within the filter through which the air flows and the distribution of air and water inside the porous medium has been investigated. The aim of this paper is to investigate the geometry of the pathways and to make estimates of the flow velocities and particle removal efficiency in such pathways. A mathematical model of the flow of air along the preferred pathways has been developed and verified experimentally. Even for the highest realistic gas velocity the flow field was essentially laminar (Re approximate to 250). We solved Laplace's equation for stream function to map trajectories of particles and gas molecules to investigate the possibility of their removal from the carrier.
Resumo:
In a magnetic resonance imaging equipment, gradient and shim coils are needed to produce a spatially varying magnetic field throughout the sample being imaged. Such coils consist of turns of wire wound on the surface of a cylindrical tube. Shim coils in particular, must sometimes be designed to produce complicated magnetic fields to correct for impurities. Streamline patterns for shim coils are much more complicated than those for gradient coils, In this work we present a detailed analysis of streamline methods and their application to shim coil design, A method is presented for determining the winding patterns to generate these complicated fields. (C) 2002 John Wiley & Sons, Inc.
Resumo:
Solution conformation and calcium binding properties have been investigated for the two cyclic octapeptides cyclo(-D-Thr-D-Val(Thz)-Ile-)(2) (4) and cyclo(-Thr-Gly(Thz)-Ile-Ser-Gly(Thz)-Ile-)(5) and the results are compared to those for the cyclic octapeptides previously studied; ascidiacyclamide (1), patellamide D (2), cyclo(-Thr-D-Val(Thz)-Ile-)(2) (3), and cyclo(-Thr-D-Val-alphaAbu-Ile-)2 (6). Both 4 and 5 contain two heterocyclic thiazole ring constraints but the latter has a larger degree of flexibility as a consequence of the glycine residues within the cyclic framework. The solution conformation of 4 and 5 was determined from H-1 NMR spectra and found to be a twisted figure of eight similar to that for 2. Complexation studies using H-1 NMR and CD spectroscopy yielded 1 : 1 calcium-peptide binding constants (logK) for the two peptides (2.3 (4) and 5.7 (5)). For 5 the magnitude of the binding constant was verified by a competition titration using CD. The different calcium-binding affinities of 3 (logK = 4.0) and 4 is attributed to the stereochemistry of the threonine residue. The magnitude of the binding constant for 5 compared to 3 and 4 (all peptides containing two thiazole ring constrains) demonstrates that the increase in flexibility of the cyclic peptide has a dramatic effect on the Ca2+ binding ability. The affinity for Ca2+ thus decreases in the order (6 similar to 5 > 3 > 2 similar to 1 > 4). The number of carbonyl donors available on each peptide has only a limited effect on calcium binding. The most important factor is the flexibility, which allows for a conformation of the peptide capable of binding calcium efficiently.
Resumo:
A rapid spherical harmonic calculation method is used for the design of Nuclear Magnetic Resonance shim coils. The aim is to design each shim such that it generates a field described purely by a single spherical harmonic. By applying simulated annealing techniques, coil arrangements are produced through the optimal positioning of current-carrying circular arc conductors of rectangular cross-section. This involves minimizing the undesirable harmonies in relation to a target harmonic. The design method is flexible enough to be applied for the production of coil arrangements that generate fields consisting significantly of either zonal or tesseral harmonics. Results are presented for several coil designs which generate tesseral harmonics of degree one.
Resumo:
The volatile components of the chin gland secretion of the wild European rabbit, Oryctolagus cuniculus (L.), were investigated with the use of gas chromatography. Studies of the chemical nature of this secretion by previous workers demonstrated that it was important in the maintenance of social structure in this species. This study identified 34 different volatile components that consist primarily of aromatic and aliphatic hydrocarbons. Especially common are a series of alkyl-substituted benzene derivatives that provide most of the compound diversity in the secretion. Samples of chin gland secretion collected from animals at three different geographical locations, separated by more than 100 km, showed significant differences in composition. This work suggests that variation among populations needs to be considered when undertaking semiochemical research. Alternate nonparametric methods are also used for the analysis of chromatographic data.
Resumo:
in Escherichia coli, the DnaG primase is the RNA polymerase that synthesizes RNA primers at replication forks. It is composed of three domains, a small N-terminal zinc-binding domain, a larger central domain responsible for RNA synthesis, and a C-terminal domain comprising residues 434-581 [DnaG(434-581)] that interact with the hexameric DnaB helicase. Presumably because of this interaction, it had not been possible previously to express the C-terminal domain in a stably transformed E coli strain. This problem was overcome by expression of DnaG(434-581) under control of tandem bacteriophage gimel-promoters, and the protein was purified in yields of 4-6 mg/L of culture and studied by NMR. A TOCSY spectrum of a 2 mM solution of the protein at pH 7.0, indicated that its structured core comprises residues 444-579. This was consistent with sequence conservation among most-closely related primases. Linewidths in a NOESY spectrum of a 0.5 mM sample in 10 mM phosphate, pH 6.05, 0.1 M NaCl, recorded at 36 degreesC, indicated the protein to be monomeric. Crystals of selenomethionine-substituted DnaG(434-581) obtained by the hanging-drop vapor-diffusion method were body-centered tetragonal, space group I4(1)22, with unit cell parameters a = b 142.2 Angstrom, c = 192.1 Angstrom, and diffracted beyond 2.7 Angstrom resolution with synchrotron radiation. (C) 2003 Elsevier Inc. All rights reserved.
Resumo:
The high speciFIcity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability. Rigorous physicochemical analysis together with synthetic peptide chemistry is a prerequisite for detailed conformational analysis and to provide sufficient quantities of alpha-conotoxins for activity assessment and structure-activity relationship studies.
Resumo:
Although prosimians are greatly olfaction-oriented, little is known about the specifics of how they use scent to communicate. In this preliminary study we attempted to delineate intra- and interspecific differences among the anogenital gland secretions of two lemur species (Lemur catta and Propithecus verreauxi coquereli) using gas chromatography-mass spectrometry (GC-MS). The results indicate that the two species are discernible through scent. Furthermore, we were able to identify reproductive status using this technique. The anogenital secretions of the different sexes in L. catta, though perhaps not P. v. coquereli, are chemically distinguishable. Given this information, it appears that at least some lemur species can use scent marks to determine species, sex, and reproductive status. (C) 2004 Wiley-Liss, Inc.
Resumo:
The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
N,N-Dimethyl-pyrrolidinium iodide, and the effect of doping with LiI, has been investigated using DSC, NMR, and impedance spectroscopy. It was found that the addition of a small amount of LiI enhances the ionic conductivity by LIP to 3 orders of magnitude for this ionic solid. Furthermore, a slight decrease in phase transition onset temperatures, as well as the appearance of a superimposed narrow line in the H-1 NMR spectra with dopant, suggest that the LiI facilitates the mobility of the matrix material, possibly by the introduction of vacancies within the lattice. Li-7 NMR line width measurements reveal a narrow Li line width, decreasing in width and increasing in intensity with temperature, indicating mobile Li ions.