156 resultados para Microbial Ecolgy
Resumo:
The anaerobic ammonium oxidation process is a new process for ammonia removal from wastewater. It is also a new microbial physiology that was previously believed to be impossible. The identification of Candidatus Brocadia anammoxidans and its relatives as the responsible bacteria was only possible with the development of a new experimental approach. That approach is the focus of this paper. The approach is a modernisation of the Winogradsky/Beyerinck strategy of selective enrichment and is based on the introduction of the molecular toolbox and modern bioreactor engineering to microbial ecology. It consists of five steps: (1) postulation of an ecological niche based on thermodynamic considerations and macro-ecological field data; (2) engineering of this niche into a laboratory bioreactor for enrichment culture; (3) black-box physiological characterisation of the enrichment culture as a whole; (4) phylogenetic characterisation of the enriched community using molecular tools; (5) physical separation of the dominant members of the enrichment culture using gradient centrifugation and the identification of the species of interest in accordance with Koch's postulates; (6) verification of the in situ importance of these species in the actual ecosystems. The power of this approach is illustrated with a case study: the identification of the planctomycetes responsible for anaerobic ammonium oxidation. We argue that this was impossible using molecular ecology or conventional 'cultivation based techniques' alone. We suggest that the approach might also be used for the microbiological study of many interesting microbes such as anaerobic methane oxidisers.
Resumo:
Laboratory-scale sequencing batch reactors (SBRs) as models for wastewater treatment processes were used to identify glycogen-accumulating organisms (GAOs), which are thought to be responsible for the deterioration of enhanced biological phosphorus removal (EBPR). The SBRs (called Q and T), operated under alternating anaerobic-aerobic conditions typical for EBPR, generated mixed microbial communities (sludges) demonstrating the GAO phenotype. Intracellular glycogen and poly-beta-hydroxyalkanoate (PHA) transformations typical of efficient EBPR occurred but polyphosphate was not bioaccumulated and the sludges contained 1.8% P (sludge Q) and 1.5% P (sludge T). 16S rDNA clone libraries were prepared from DNA extracted from the Q and T sludges. Clone inserts were grouped into operational taxonomic units (OTUs) by restriction fragment length polymorphism banding profiles. OTU representatives were sequenced and phylogenetically analysed. The Q sludge library comprised four OTUs and all six determined sequences were 99.7% identical, forming a cluster in the gamma-Proteobacteria radiation. The T sludge library comprised eight OTUs and the majority of clones were Acidobacteria subphylum 4 (49% of the library) and candidate phylum OPU (39% of the library). One OTU (two clones, of which one was sequenced) was in the gamma-Proteobacteria radiation with 95% sequence identity to the Q sludge clones. Oligonucleotide probes (called GAOQ431 and GAOQ989) were designed from the gamma-Proteobacteria clone sequences for use in fluorescence in situ hybridization (FISH); 92 % of the Q sludge bacteria and 28 % of the T sludge bacteria bound these probes in FISH. FISH and post-FISH chemical staining for PHA were used to determine that bacteria from a novel gamma-Proteobacteria cluster were phenotypically GAOs in one laboratory-scale SBR and two fullscale wastewater treatment plants. It is suggested that the GAOs from the novel cluster in the gamma-Proteobacteria radiation be named 'Candidatus Competibacter phosphatis'.
Resumo:
The recent discovery of isotrichid-like ciliates occurring as endosymbionts in macropodid marsupials posed interesting questions in regard to both their phyletic origin (all previous records confined to eutherian mammals) and their morphological evolution (Australian forms possibly representing missing links between previously described genera). The SSU rRNA gene was sequenced for three species (Dasytricha dehorityi, D. dogieli, and Batricha tasmaniensis) and aligned against representatives of all major ciliate classes. The Australian species did not group with the other isotrichid species but instead formed an independent radiation. Discrepancies between recent global phylogenies of the phylum Ciliophora were examined by manipulation of the aligned sequence data set. Sources of conflict between these studies did not stem from differences in outgroup choice or phylogenetic reconstruction methods. Differences in the application of confidence limits and primary sequence alignment have probably resulted in the reporting of spurious associations which are not supported by more conservative confidence or alignment methodology. At present, the ciliate subphylum Intramacro-nucleata is an unresolved polytomy which may be due to deficiencies in the SSU rRNA gene sequence dataset or indicate that the ciliates radiated into their extant classes by rapid burst-like evolution. (C) 2001 academic Press.
Resumo:
Aims: The aim of this study was to identify, clone and characterize the second amylase of Aeromonas hydrophila JMP636, AmyB, and to compare it to AmyA. Methods and Results: The amylase activity of A. hydrophila JMP636 is encoded by multiple genes. A second genetically distinct amylase gene, amyB, has been cloned and expressed from its own promoter in Escherichia coli. AmyB is a large alpha-amylase of 668 amino acids. Outside the conserved domains of alpha-amylases there is limited sequence relationship between the two alpha-amylases of A. hydrophila JMP636 AmyA and AmyB. Significant (80%) similarity exists between amyB and an alpha-amylase of A. hydrophila strain MCC-1. Differences in either the functional properties or activity under different environmental conditions as possible explanations for multiple copies of amylases in JMP636 is less likely after an examination of several physical properties, with each of the properties being very similar for both enzymes (optimal pH and temperature, heat instability). However the reaction end products and substrate specificity did vary enough to give a possible reason for the two enzymes being present. Both enzymes were confirmed to be alpha-type amylases. Conclusions: AmyB has been isolated, characterized and then compared to AmyA. Significance and Impact of Study: The amylase phenotype is rarely encoded by more than one enzyme within one strain, this study therefore allows the better understanding of the unusual amylase production by A. hydrophila.
Resumo:
Aims: The physiological examination of amylase production by Aeromonas hydrophila JMP636 and identification of the mechanism of regulation. Methods and Results: Aeromonas hydrophila JMP636 was grown with single, then dual carbon sources; the growth cycle was followed and amylase activity throughout was monitored. The levels of cAMP, a known secondary messenger for the regulatory gene crp, were also examined. Amylase activity was regulated by catabolite repression. Physiological studies revealed that JMP636 exhibited both diauxic growth, with two carbon sources, and the 'acid toxicity' effect on glucose. The crp gene was cloned, expressed and inactivated from the JMP636 chromosome. Catabolite repression of amylase production and the 'acid toxicity' effect both require crp and were linked to cAMP levels. Conclusions: Regulation of amylase production was predicted to follow the model CRP-mediated cAMP-dependent Escherichia coli catabolite regulation system. Significance and Impact of the Study: This work provides an understanding of the physiology of the opportunistic pathogen Aer. hydrophila through identification of the mechanism of catabolite repression of amylase production and the existence of crp within this cell. It also provides a broader knowledge of global gene regulation and suggests regulatory mechanisms of other Aer. hydrophila gene/s.
Resumo:
The ultrastructural features of Macropodinium moiri were investigated. The somatic cortex is composed of two lateral non-ciliated zones covered with trapezoidal plates and separated by a trough-like dorsoventral groove (DVG) which divides the cell into left and right halves. The somatic kineties occupy the margins of the DVG and are composed of monokinetids whose infraciliature shows a typical litostome pattern. The pellicular plates are lamellate, and separated by V-shaped grooves which are lined by thick-walled vacuoles. The DVG cortex is composed of electron-opaque U-shaped ribs which alternate with electron-lucent saccular structures. The DVG surface is composed of small regular pellicular sacs built up to form the ridges of the dorsal DVG. The vestibulum forms a laterally compressed cone with left/right differentiation. The basal section of its non-ciliated right side is internally lined (outer to innermost) by longitudinal fibres, nematodesmata and transverse microtubular ribbons. The left side bears the vestibular kineties and in its basal section is lined (outer to innermost) by small nematodesmata and transverse tubules. Cytoplasmic organelles include endoplasmic reticulum, starch granules and a single contactile vacuole surrounded by patches of nephridioplasm. Hydrogenosomes are absent and coccoid Gram-positive bacteria lie under the ciliated portions of the cell. This set of characteristics differs significantly from those of the all other trichostomes; Macropodiniidae is therefore designated Trichostomatia incertae sedis. A revised familial diagnosis of the Macropodiniidae is proposed.
Resumo:
New cultured strains of the planctomycete division (order Planctomycetales) of the domain Bacteria related to species in the genera Gemmata and Isosphaera were isolated from soil, freshwater, and a laboratory ampicillin solution. Phylogenetic analysis of the 16S rRNA gene from eight representative isolates showed that all the isolates were members of the planctomycete division. Six isolates clustered with Gemmata obscuriglobus and related strains, while two isolates clustered with Isosphaera pallida. A double-membrane-bounded nucleoid was observed in Gemmata-related isolates but not in Isosphaera-related isolates, consistent with the ultrastructures of existing species of each genus. Two isolates from this study represent the first planctomycetes successfully cultivated from soil.
Resumo:
The ultrastructural features of the holotrichous ciliates inhabiting macropodid maruspials were investigated to resolve their morphological similarity to other trichostome ciliates with observed differences in their small subunit rRNA gene sequences. The ultrastructure of Amylovorax dehorityi nov. comb. (formerly Dasytricha dehorityi) was determined by transmission electron microscopy. The somatic kineties are composed of monokinetids whose microtubules show a typical litostome pattern. The somatic cortex is composed of ridges which separate kinety rows, granular ectoplasm and a basal layer of hydrogenosomes lining the tela corticalis. The vestibulum is an invagination of the pellicle lined down one side with kineties (invaginated extensions of the somatic kineties); transverse tubules line the surface of the vestibulum and small nematodesmata surround it forming a cone-like network of struts. Cytoplasmic organelles include hydrogenosomes, irregularly shaped contractile vacuoles surrounded by a sparse spongioplasm, food vacuoles containing bacteria and large numbers of starch granules. This set of characteristics differs sufficiently from those of isotrichids and members of the genus Dasytricha to justify the erection of a new genus (Amylovorax) and a new family (Amylovoracidae). Dasytricha dehorityi, D. dogieli and D. mundayi are reassigned to the new genus Amylovorax and a new species A. quokka is erected. While the gross morphological similarities between Amylovorax and Dasytricha may be explained by convergent evolution, ultrastructural features indicate that these two genera have probably diverged independently from haptorian ancestors by successive reduction of the cortical and vestibular support structures.
Resumo:
Nine novel arsenite-oxidizing bacteria have been isolated from two different gold mine environments in Australia. Four of these organisms grow chemolithoautotrophically with oxygen as the terminal electron acceptor, arsenite as the electron donor, and carbon dioxide-bicarbonate as the sole carbon source. Five heterotrophic arsenite-oxidizing bacteria were also isolated, one of which was found to be both phylogenetically and physiologically identical to the previously described heterotrophic arsenite oxidizer misidentified as Alcaligenes faecalis. The results showed that this strain belongs to the genus Achromobacter. Phylogenetically, the arsenite-oxidizing bacteria fall within two separate subdivisions of the Proteobacteria. Interestingly, the chemolithoautotrophic arsenite oxidizers belong to the alpha-Proteobacteria, whereas the heterotrophic arsenite oxidizers belong to the beta-Proteobacteria.
Resumo:
Recently it has been observed that multicopper oxidases are present in a number of microbial genomes, raising the question of their function in prokaryotes. Here we describe the analysis of an mco mutant from the opportunistic pathogen Pseudomonas aeruginosa. Unlike wild-type Pseudomonas aeruginosa, the mco mutant was unable to grow aerobically on minimal media with Fe(II) as sole iron source. In contrast, both the wild-type and mutant strain were able to grow either anaerobically via denitrification with Fe(II) or aerobically with Fe(III). Analysis of iron uptake showed that the mco mutant was impaired in Fe(II) uptake but unaffected in Fe(III) uptake. Purification and analysis of the MCO protein confirmed ferroxidase activity. Taken together, these data show that the mco gene encodes a multicopper oxidase that is involved in the oxidation of Fe(II) to Fe(III) subsequent to its acquisition by the cell. In view of the widespread distribution of the mco gene in bacteria, it is suggested that an iron acquisition mechanism involving multicopper oxidases may be an important and hitherto unrecognized feature of bacterial pathogenicity.
Resumo:
In recent years, studies on environmental samples with unusual dibenzo-p-dioxin (PCDD) congener profiles were reported from a range of countries. These profiles, characterized by a dominance of octachlorinated dibenzodioxin (OCDD) and relatively low in dibenzofuran (PCDF) concentrations, could not be attributed to known sources or formation processes. In the present study, the processes that result in these unusual profiles were assessed using the concentrations and isomer signatures of PCDDs from dated estuarine sediment cores in Queensland, Australia. Increases in relative concentrations of lower chlorinated PODS and a relative decrease of OCDD were correlated with time of sediment deposition. Preferred lateral, anaerobic dechlorination of OCDD represents a likely pathway for these changes. In Queensland sediments, these transformations result in a distinct dominance of isomers fully chlorinated in the 1,4,6,9-positions (1,4-patterns), and similar 1,4-patterns were observed in sediments from elsewhere. Consequently, these environmental samples may not reflect the signatures of the original source, and a reevaluation of source inputs was undertaken. Natural formation of PCDDs, which has previously been suggested, is discussed; however, based on the present results and literature comparisons, we propose an alternative scenario. This scenario hypothesizes that an anthropogenic PCDD precursor input (e.g. pentachlorophenol) results in the contamination. These results and hypothesis imply further investigations are warrented into possible anthropogenic sources in areas where natural PCDD formation has been suggested.
Resumo:
Hypersensitivity to external stimuli, progressing in some animals to manic behaviour, occurred in a cattle herd that grazed a crop of field peas (Pisum sativum var arvense) in the pre-flowering stage. Haematological and biochemical analyses eliminated hypomagnesaemia and ketosis as diagnoses. Other than two steers euthanased due to injuries sustained during manic episodes, all affected animals survived, recovering over 3 days when moved to alternative pasture. No necropsies were conducted. No microbial pathogens or endophytes were found on or in the plants. A previously reported incident in Victoria in 1987 in cattle grazing peas appeared to be of a similar nature. Environmental factors leading to these incidents were not clearly identified.
Resumo:
The fate of N-15-nitrogen-enriched formulated feed fed to shrimp was traced through the food web in shallow, outdoor tank systems (1000 1) stocked with shrimp. Triplicate tanks containing shrimp water with and without sediment were used to identify the role of the natural biota in the water column and sediment in processing dietary nitrogen (N). A preliminary experiment demonstrated that N-15-nitrogen-enriched feed products could be detected in the food web. Based on this, a 15-day experiment was conducted. The ammonium (NH4+) pool in the water column became rapidly enriched (within one day) with N-15-nitrogen after shrimp were fed N-15-enriched feed. By day 15, 6% of the added N-15-nitrogen was in this fraction in the 'sediment' tanks compared with 0.4% in the 'no sediment' tanks. The particulate fraction in the water column, principally autotrophic nanoflagellates, accounted for 4-5% of the N-15-nitrogen fed to shrimp after one day. This increased to 16% in the 'no sediment' treatment, and decreased to 2% in the 'sediment' treatment by day 15. It appears that dietary N was more accessible to the phytoplankton community in the absence of sediment. The difference is possibly because a proportion of the dietary N was buried in the sediment in the 'sediment' treatment, making it unavailable to the phytoplankton. Alternatively, the dietary N was retained in the NH4+ pool in the water column since phytoplankton growth, and hence, N utilization was lower in the 'sediment' treatment. The lower growth of phytoplankton in the 'sediment' treatment appeared to be related to higher turbidity, and hence, lower light availability for growth. The percentage N-15-nitrogen detected in the sediment was only 6% despite the high capacity for sedimentation of the large biomass of plankton detritus and shrimp waste. This suggests rapid remineralization of organic waste by the microbial community in the sediment resulting in diffusion of inorganic N sources into the water column. It is likely that most of the dietary N will ultimately be removed from the tank system by water discharges. Our study showed that N-15-nitrogen derived from aquaculture feed can be processed by the microbial community in outdoor aquaculture systems and provides a method for determining the effect of dietary N on ecosystems. However, a significant amount of the dietary N was not retained by the natural biota and is likely to be present in the soluble organic fraction. (C) 2002 Elsevier Science B.V. All rights reserved.