132 resultados para High impedance ground plane(HIGP)
Resumo:
Magneto-transport measurements of the 2D hole system (2DHS) in p-type Si-Si1-xGex heterostructures identify the integer quantum Hall effect (IQHE) at dominantly odd-integer filling factors v and two low-temperature insulating phases (IPs) at v = 1.5 and v less than or similar to 0.5, with re-entrance to the quantum Hall effect at v = 1. The temperature dependence, current-voltage characteristics, and tilted field and illumination responses of the IP at v = 1.5 indicate that the important physics is associated with an energy degeneracy of adjacent Landau levels of opposite spin, which provides a basis for consideration of an intrinsic, many-body origin.
Resumo:
The classification rules of linear discriminant analysis are defined by the true mean vectors and the common covariance matrix of the populations from which the data come. Because these true parameters are generally unknown, they are commonly estimated by the sample mean vector and covariance matrix of the data in a training sample randomly drawn from each population. However, these sample statistics are notoriously susceptible to contamination by outliers, a problem compounded by the fact that the outliers may be invisible to conventional diagnostics. High-breakdown estimation is a procedure designed to remove this cause for concern by producing estimates that are immune to serious distortion by a minority of outliers, regardless of their severity. In this article we motivate and develop a high-breakdown criterion for linear discriminant analysis and give an algorithm for its implementation. The procedure is intended to supplement rather than replace the usual sample-moment methodology of discriminant analysis either by providing indications that the dataset is not seriously affected by outliers (supporting the usual analysis) or by identifying apparently aberrant points and giving resistant estimators that are not affected by them.
Resumo:
The large number of wetlands treating mining wastewaters around the world have mostly been constructed in temperate environments. Wetlands have yet to be proven in low rainfall, high evaporation environments and such conditions are common in many parts of Australia. BHP Australia Coal is researching whether wetlands have potential in central Queensland to treat coal mining wastewaters. In this region, mean annual rainfall is < 650 mm and evaporation > 2 000 mm. A pilot-scale wetland system has been constructed at an open-cut coal mine. The system comprises six treatment cells, each 125 m long and 10 m wide. The system is described in the paper and some initial results presented. Results over the first fourteen months of operation have shown that although pH has not increased enough to enable reuse or release of the water, sulfate reduction has been observed in parts of the system, as shown by the characteristic black precipitate and smell of hydrogen sulfide emanating from the wetlands. These encouraging signs have led to experiments aimed at identifying the factors limiting sulfate reduction. The first experiment, described herein, included four treatments where straw was overlain by soil and the water level varied, being either at the top of the straw, at the top of the soil, or about 5 cm above the soil. The effect of inoculating with sulfate-reducing bacteria was investigated. Two controls were included, one covered and one open, to enable the effect of evaporation to be determined. The final treatment consisted of combined straw/cattle manure overlain with soil. Results showed that sulfate reduction did occur, as demonstrated by pH increases and lowering of sulfate levels. Mean pH of the water was significantly higher after 19 days; in the controls, pH was < 3.3, whereas in the treatments, pH ranged from 5.4 to 6.7. The best improvement in sulfate levels occurred in the straw/cattle manure treatment. (C) 1997 IAWQ. Published by Elsevier Science Ltd.
Resumo:
The germination of the seeds from the Chesnut tree (Castanospermum australe) has been investigated by the NMR Microimaging at 190 MHz. Conventional H-1 spin-echo and T-1 images reveals some details of black bean seeds vascular structure: a system of small spherical holes and curvelinear pathways.
Resumo:
Conducting dielectric samples are often used in high-resolution experiments at high held. It is shown that significant amplitude and phase distortions of the RF magnetic field may result from perturbations caused by such samples. Theoretical analyses demonstrate the spatial variation of the RF field amplitude and phase across the sample, and comparisons of the effect are made for a variety of sample properties and operating field strengths. Although the effect is highly nonlinear, it tends to increase with increasing field strength, permittivity, conductivity, and sample size. There are cases, however, in which increasing the conductivity of the sample improves the homogeneity of the amplitude of the RF field across the sample at the expense of distorted RF phase. It is important that the perturbation effects be calculated for the experimental conditions used, as they have the potential to reduce the signal-to-noise ratio of NMR experiments and may increase the generation of spurious coherences. The effect of RF-coil geometry on the coherences is also modeled, with the use of homogeneous resonators such as the birdcage design being preferred, Recommendations are made concerning methods of reducing sample-induced perturbations. Experimental high-field imaging and high-resolution studies demonstrate the effect. (C) 1997 Academic Press.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
We have compared the use of bioelectrical impedance analysis (BIA) with anthropometry for the prediction of changes in total body potassium (TBK) in a group (n = 31) of children with cystic fibrosis. Linear regression analysis showed that TBK was highly correlated (r > 0.93) with height(2)/impedance, weight, height, and fat-free mass (FFM) estimated from skin-fold measurements. Changes in TBK were also correlated, but less well, with changes in height(2)/impedance, weight, height, and FFM (r = 0.69, 0.59, 0.44, and 0.40, respectively). The children were divided into two groups: those who had normal accretion of TBK (> 5%/y) and those who had suboptimal accretion of TBK (< 5%/y). Analysis of variance showed that the significant difference in the change in TBK between the groups was detectable by concomitant changes in impedance and weight but not by changes in height, FFM, or weight and height Z scores. The results of this study suggest that serial BIA measures may be useful as a predictor of progressive undernutrition and poor growth in children with cystic fibrosis. (C) Elsevier Science Inc. 1997.
Resumo:
Experimental data for E. coli debris size reduction during high-pressure homogenisation at 55 MPa are presented. A mathematical model based on grinding theory is developed to describe the data. The model is based on first-order breakage and compensation conditions. It does not require any assumption of a specified distribution for debris size and can be used given information on the initial size distribution of whole cells and the disruption efficiency during homogenisation. The number of homogeniser passes is incorporated into the model and used to describe the size reduction of non-induced stationary and induced E. coil cells during homogenisation. Regressing the results to the model equations gave an excellent fit to experimental data ( > 98.7% of variance explained for both fermentations), confirming the model's potential for predicting size reduction during high-pressure homogenisation. This study provides a means to optimise both homogenisation and disc-stack centrifugation conditions for recombinant product recovery. (C) 1997 Elsevier Science Ltd.
Resumo:
Familial Mediterranean fever (FMF) is a recessive disorder of inflammation caused by mutations in a gene (designated MEFV) on chromosome 16p13.3, We have recently constructed a 1-Mb cosmid contig that includes the FMF critical region. Here we show genotype data for 12 markers from our physical map, including 5 newly identified microsatellites, in FMF families. Intrafamilial recombinations placed MEFV in the similar to 285 kb between D16S468/D16S3070 and D16S3376. We observed significant linkage disequilibrium in the North African Jewish population, and historical recombinants in the founder haplotype placed MEFV between D16S3082 and D16S3373 (similar to 200 kb). In smaller panels of Iraqi Jewish, Arab, and Armenian families, there were significant allelic associations only for D16S3370 and D16S2617 among the Armenians. A sizable minority of Iraqi Jewish and Armenian carrier chromosomes appeared to be derived from the North African Jewish ancestral haplotype. We observed a unique FMF haplotype common to Iraqi Jews, Arabs, and Armenians and two other haplotypes restricted to either the Iraqi Jewish or the Armenian population. These data support the view that a few major mutations account for a large percentage of the cases of FMF and suggest that same of these mutations arose before the affected Middle Eastern populations diverged from one another. (C) 1997 Academic Press.