155 resultados para Family healthcare unit
Resumo:
Dimethyl sulphide dehydrogenase catalyses the oxidation of dimethyl sulphide to dimethyl sulphoxide (DMSO) during photoautotrophic growth of Rhodovulum sulfidophilum . Dimethyl sulphide dehydrogenase was shown to contain bis (molybdopterin guanine dinucleotide)Mo, the form of the pterin molybdenum cofactor unique to enzymes of the DMSO reductase family. Sequence analysis of the ddh gene cluster showed that the ddhA gene encodes a polypeptide with highest sequence similarity to the molybdop-terin-containing subunits of selenate reductase, ethylbenzene dehydrogenase. These polypeptides form a distinct clade within the DMSO reductase family. Further sequence analysis of the ddh gene cluster identified three genes, ddhB , ddhD and ddhC . DdhB showed sequence homology to NarH, suggesting that it contains multiple iron-sulphur clusters. Analysis of the N-terminal signal sequence of DdhA suggests that it is secreted via the Tat secretory system in complex with DdhB, whereas DdhC is probably secreted via a Sec-dependent mechanism. Analysis of a ddhA mutant showed that dimethyl sulphide dehydrogenase was essential for photolithotrophic growth of Rv. sulfidophilum on dimethyl sulphide but not for chemo-trophic growth on the same substrate. Mutational analysis showed that cytochrome c (2) mediated photosynthetic electron transfer from dimethyl sulphide dehydrogenase to the photochemical reaction centre, although this cytochrome was not essential for photoheterotrophic growth of the bacterium.
Resumo:
The dimethylsulfoxide (DMSO) reductase family of molybdenum enzymes is a large and diverse group that is found in bacteria and archaea. These enzymes are characterised by a bis(molybdopterin guanine dinucleotide)Mo form of the molybdenum cofactor, and they are particularly important in anaerobic respiration including the dissimilatory reduction of certain toxic oxoanions. The structural and phylogenetic relationship between the proteins of this family is discussed. High-resolution crystal structures of enzymes of the DMSO reductase family have revealed a high degree of similarity in tertiary structure. However, there is considerable variation in the structure of the molybdenum active site and it seems likely that these subtle but important differences lead to the great diversity of function seen in this family of enzymes. This diversity of catalytic capability is associated with several distinct pathways of electron transport.
Resumo:
Nedd4 belongs to a family of ubiquitin-protein ligases that is characterized by 2-4 WW domains, a carboxyl-terminal Hect ((h) under bar omologous to (E) under bar6-AP (C) under bar arboxyl (t) under bar erminus)-domain and in most cases an amino-terminal C2 domain. We had previously identified a series of proteins that associates with the WW domains of Nedd4. In this paper, we demonstrate that one of the Nedd4-binding proteins, N4WBP5, belongs to a small group of evolutionarily conserved proteins with three transmembrane domains. N4WBP5 binds Nedd4 WW domains via the two PPXY motifs present in the amino terminus of the protein. In addition to Nedd4, N4WBP5 can interact with the WW domains of a number of Nedd4 family members and is ubiquitinated. Endogenous N4WBP5 localizes to the Golgi complex. Ectopic expression of the protein disrupts the structure of the Golgi, suggesting that N4WBP5 forms part of a family of integral Golgi membrane proteins. Based on previous observations in yeast, we propose that N4WBP5 may act as an adaptor for Nedd4-like proteins and their putative targets to control ubiquitin-dependent protein sorting and trafficking.
Resumo:
A population-based study was conducted to validate gender- and age-specific indexes of socio-economic status (SES) and to investigate the associations between these indexes and a range of health outcomes in 2 age cohorts of women. Data from 11,637 women aged 45 to 50 and 9,5 10 women aged 70 to 75 were analyzed. Confirmatory factor analysis produced four domains of SES among the mid-aged cohort (employment, family unit, education, and migration) and four domains among the older cohort (family unit, income, education, and migration). Overall, the results supported the factor structures derived from another population-based study (Australian Bureau of Statistics, 1995), reinforcing the argument that SES domains differ across age groups. In general, the findings also supported the hypotheses that women with low SES would have poorer health outcomes than higher SES women, and that the magnitude of these effects would differ according to the specific SES domain and by age group, with fewer and smaller differences observed among older women. The main exception was that in the older cohort, the education domain was significantly associated with specific health conditions. Results suggest that relations between SES and health are highly complex and vary by age, SES domain, and the health outcome under study.
Resumo:
Sperm ultrastructure is examined in representatives of five genera of the nudibranch gastropod family Chromodorididae: (Chromodoris, Hypselodoris, Glossodoris, Risbecia and Pectenodoris) and the results compared with previous work on other gastropods, especially other nudibranchs. As chromodoridid phylogeny is still incompletely understood, this study partly focuses on the search for new and as yet untapped sources of informative characters. Like spermatozoa of most other heterobranch gastropods, those of the Chromodorididae are elongate, complex cells composed of an acrosomal complex (small, rounded acrosomal vesicle, and columnar acrosomal pedestal), a condensed nucleus, sub-nuclear ring, a highly modified mid-piece (axoneme + coarse fibres surrounded by a glycogen-containing, helically-coiled mitochondrial derivative) and terminally a glycogen piece (or homologue thereof). The finely striated acrosomal pedestal is a synapomorphy of all genera examined here, but interestingly also occurs in at least one dorid (Rostanga arbutus). Substantial and potentially taxonomically informative differences were also observed between genera in the morphology of the nucleus, the neck region of the mid-piece, and also the terminal glycogen piece. The subnuclear ring is shown for the first time to be a segmented, rather than a continuous structure; similarly, the annular complex is shown to consist of two structures, the annulus proper and the herein-termed annular accessory body.
Resumo:
Two peptides, textilinins 1 and 2, isolated from the venom of the Australian common brown snake, Pseudonaja textilis textilis, are effective in preventing blood loss. To further investigate the potential of textilinins as anti-haemorrhagic agents, we cloned cDNAs encoding these proteins. The isolated full-length cDNA (430 bp in size) was shown to code for a 59 amino acid protein, corresponding in size to the native peptide, plus an additional 24 amino acid propeptide. Six such cDNAs were identified, differing in nucleotide sequence in the coding region but with an identical propeptide. All six sequences predicted peptides containing six conserved cysteines common to Kunitz-type serine protease inhibitors. When expressed as glutathione S-transferase (GST) fusion proteins and released by cleavage with thrombin, only those peptides corresponding to textilinin 1 and 2 were active in inhibiting plasmin with K-i values similar to those of their native counterparts and in binding to plasmin less tightly than aprotinin by two orders of magnitude. Similarly, in the mouse tail vein blood loss model only recombinant textilinin 1 and 2 were effective in reducing blood loss. These recombinant textilinins have potential as therapeutic agents for reducing blood loss in humans, obviating the need for reliance on aprotinin, a bovine product with possible risk of transmissible disease, and compromising the fibrinolytic system in a less irreversible manner.