198 resultados para Family Dynamics
Resumo:
Kenyan women have more children, especially in rural areas, than in most developing nations. This is widely believed to be an impediment to Kenya’s economic development. Thus, factors influencing family size in the Kenyan context are important for its future. A brief review of economic theories of fertility leads to the conclusion that both economics and social/cultural factors must be considered simultaneously when examining factors that determine the number of children in a family. The need to do this is borne out in Kenya’s situation by utilising responses from a random sample of rural households in the Nyeri district of Kenya. Economic and social/cultural factors intertwine to influence family sizes in this district. After providing a summary of the main statistical results from the survey, we use multiple regression analysis to explore the influences of a woman’s age, level of education, whether she has outside employment, whether the family keeps livestock, whether she expresses a preference for more boys than girls, whether the family uses only family labour (including child labour) and the size of the farm, which is used as a proxy for family income. It was found that preference for male children has an important positive influence on family size in this district. Women were found to have greater preference for male children than their male counterparts possibly because of their fear of being disinherited if they do not produce an heir for their husbands. Preference for sons was also found in allocation of human capital resources at the household level in that the female respondents were found to have lower levels of education than their male counterparts. Various long-term policies are outlined that may help to reduce the number of offspring of women in Kenya.
Good Practice in Indigenous Family Violence Prevention: Designing and Evaluating Successful Programs
Resumo:
Classical dynamics is formulated as a Hamiltonian flow in phase space, while quantum mechanics is formulated as unitary dynamics in Hilbert space. These different formulations have made it difficult to directly compare quantum and classical nonlinear dynamics. Previous solutions have focused on computing quantities associated with a statistical ensemble such as variance or entropy. However a more diner comparison would compare classical predictions to the quantum predictions for continuous simultaneous measurement of position and momentum of a single system, in this paper we give a theory of such measurement and show that chaotic behavior in classical systems fan be reproduced by continuously measured quantum systems.
Resumo:
We present a mathematical framework that combines extinction-colonization dynamics with the dynamics of patch succession. We draw an analogy between the epidemiological categorization of individuals (infected, susceptible, latent and resistant) and the patch structure of a spatially heterogeneous landscape (occupied-suitable, empty-suitable, occupied-unsuitable and empty-unsuitable). This approach allows one to consider life-history attributes that influence persistence in patchy environments (e.g., longevity, colonization ability) in concert with extrinsic processes (e.g., disturbances, succession) that lead to spatial heterogeneity in patch suitability. It also allows the incorporation of seed banks and other dormant life forms, thus broadening patch occupancy dynamics to include sink habitats. We use the model to investigate how equilibrium patch occupancy is influenced by four critical parameters: colonization rate? extinction rate, disturbance frequency and the rate of habitat succession. This analysis leads to general predictions about how the temporal scaling of patch succession and extinction-colonization dynamics influences long-term persistence. We apply the model to herbaceous, early-successional species that inhabit open patches created by periodic disturbances. We predict the minimum disturbance frequency required far viable management of such species in the Florida scrub ecosystem. (C) 2001 Academic Press.
Resumo:
Objective: The authors investigated differences between twins in nine pairs of female monozygotic twins in the Australian Twin Registry who were discordant for lifetime bulimia nervosa. Method: The twins affected and unaffected by lifetime bulimia nervosa were compared on self-report measures, including a measure of parental bonding, four measures of temperament, and six early-childhood medical conditions. Results: No twins had current bulimia nervosa, and there was no difference in weight or eating status between the affected and unaffected twins. The affected twins reported significantly lower self-esteem and less warmth but more overprotection by their mothers during childhood. Conclusions: Although limited by the small number of discordant twin pairs and the inability to detect causal relationships, these results suggest that environmental influences that promote low self-esteem may also increase the risk for bulimia nervosa. These temperamental differences may explain the discrepancies in parenting or perceived parenting.
Resumo:
The ligand-binding region of the low-density lipoprotein (LDL) receptor is formed by seven N-terminal, imperfect, cysteine-rich (LB) modules. This segment is followed by an epidermal growth factor precursor homology domain with two N-terminal, tandem, EGF-like modules that are thought to participate in LDL binding and recycling of the endocytosed receptor to the cell surface. EGF-A and the concatemer, EGF-AB, of these modules were expressed in Escherichia coli. Correct protein folding of EGF-A and the concatemer EGF-AB was achieved in the presence or absence of calcium ions, in contrast to the LB modules, which require them for correct folding. Homonuclear and heteronuclear H-1-N-15 NMR spectroscopy at 17.6 T was used to determine the three-dimensional structure of the concatemer. Both modules are formed by two pairs of short, anti-parallel beta -strands. In the concatemer, these modules have a fixed relative orientation, stabilized by calcium ion-binding and hydrophobic interactions at the interface. N-15 longitudinal and transverse relaxation rates, and {H-1}-N-15 heteronuclear NOEs were used to derive a model-free description of the backbone dynamics of the molecule. The concatemer appears relatively rigid, particularly near the calcium ion-binding site at the module interface, with an average generalized order parameter of 0.85 +/- 0.11. Some mutations causing familial hypercholesterolemia may now be rationalized. Mutations of D41, D43 and E44 in the EGF-B calcium ion-binding region may affect the stability of the linker and thus the orientation of the tandem modules. The diminutive core also provides little structural stabilization, necessitating the presence of disulfide bonds. The structure and dynamics of EGF-AB contrast with the N-terminal LB modules, which require calcium ions both for folding to form the correct disulfide connectivities and for maintenance of the folded structure, and are connected by highly mobile linking peptides. (C) 2001 Academic Press.
Resumo:
Acetohydroxy acid isomeroreductase is a key enzyme involved in the biosynthetic pathway of the amino acids isoleucine, valine, and leucine. This enzyme is of great interest in agrochemical research because it is present only in plants and microorganisms, making it a potential target for specific herbicides and fungicides. Moreover, it catalyzes an unusual two-step reaction that is of great fundamental interest. With a view to characterizing both the mechanism of inhibition by potential herbicides and the complex reaction mechanism, various techniques of enzymology, molecular biology, mass spectrometry, X-ray crystallography, and theoretical simulation have been used. The results and conclusions of these studies are described briefly in this paper.
Resumo:
The extended X-ray absorption fine structure spectroscopy (EXAFS) of (ND4)(2)[CU(D2O)(6)](SO4)(2) at 5, 14,100, 200, and 298 K is reported. This indicates that the Cu-O bond lengths of the Cu(D2O)(6)(2+) ion do not change significantly within this temperature range, which contrasts with EPR results and X-ray and neutron diffraction experiments, which imply that two of the Cu-(D2O) bonds converge in length as the temperature is raised. The EXAFS measurements thus confirm that the bond distances yielded by the diffraction experiments refer to the average positions of ligands involved in a dynamic equilibrium in which the directions of the long and intermediate bonds of the Jahn-Teller distorted Cu(D2O)(6)(2+) ion are interchanged in the crystal lattice. Analysis of the displacement parameters is consistent with this interpretation, as are the wave functions calculated using a model involving Jahn-Teller vibronic coupling and the influence of lattice strain interactions.