159 resultados para Dynamic Changes
Resumo:
Composite resin is a widely-used direct tooth coloured restorative material. Photoactivation of the polymerisation reaction can be achieved by visible blue light from a range of light sources, including halogen lamps, metal halide lamps, plasma arc lamps, and Light Emitting Diode (LED) lights. Concerns have been raised that curing lights may induce a temperature rise that could be detrimental to the vitality of the dental pulp during the act of photoactivation. The present study examined heat changes associated with standardised class V restorations on the buccal surface of extracted premolar teeth, using a curing time of 40 seconds. The independent effects of type of light source, resin shade and remaining tooth thickness were assessed using a matrix experimental design. When a conventional halogen lamp, a metal halide lamp and two different LED lights were compared, it was found that both LED lamps elicited minimal thermal changes at the level of the dental pulp, whereas the halogen lamp induced greater changes and the metal halide lamp caused the greatest thermal insult of all the light sources. These thermal changes were influenced by resin shade, with different patterns for LED versus halogen or halide sources. Thermal stress reduced as the remaining thickness of tooth structure between the pulp and the cavity floor increased. From these results, it is concluded that LED lights produce the least thermal insult during photopolymerisation of composite resins.
Resumo:
We are witnessing an enormous growth in biological nitrogen removal from wastewater. It presents specific challenges beyond traditional COD (carbon) removal. A possibility for optimised process design is the use of biomass-supporting media. In this paper, attached growth processes (AGP) are evaluated using dynamic simulations. The advantages of these systems that were qualitatively described elsewhere, are validated quantitatively based on a simulation benchmark for activated sludge treatment systems. This simulation benchmark is extended with a biofilm model that allows for fast and accurate simulation of the conversion of different substrates in a biofilm. The economic feasibility of this system is evaluated using the data generated with the benchmark simulations. Capital savings due to volume reduction and reduced sludge production are weighed out against increased aeration costs. In this evaluation, effluent quality is integrated as well.
Resumo:
The temperature dependence of the X- and Q-band EPR spectra of Cs-2[Zn(H2O)(6)](ZrF6)(2) containing similar to1% Cu2+ is reported. All three molecular g-values vary with temperature, and their behavior is interpreted using a model in which the potential surface of the Jahn-Teller distorted Cu(H2O)(6)(2+) ion is perturbed by an orthorhombic strain induced by interactions with the surrounding lattice. The strain parameters are significantly smaller than those reported previously for the Cu(H2O)(6)(2+) ion in similar lattices. The temperature dependence of the two higher g-values suggests that in the present compound the lattice interactions change slightly with temperature. The crystal structure of the Cs-2[Zn(H2O)(6)](ZrF6)(2) host is reported, and the geometry of the Zn(H2O)(6)(2+) ion is correlated with lattice strain parameters derived from the EPR spectrum of the guest Cu2+ complex.
Resumo:
Study Design. A cross-sectional case-control study. Objectives. To examine the effect of fatigue on torque output as well as electromyographic frequency and amplitude values of trunk muscles during isometric axial rotation exertion in back pain patients and to compare the results with a matched control group. Summary of Background Data. Back pain patients exhibited different activation strategies in trunk muscles during the axial rotation exertions. Fatigue changes of abdominal and back muscles during axial rotation exertion have not been examined in patients with back pain. Methods. Twelve back pain patients and 12 matched controls performed isometric fatiguing axial rotation to both sides at 80% maximum voluntary contraction in a standing position. During the fatiguing exertion, electromyographic changes of rectus abdominis, external oblique, internal oblique, latissimus dorsi, iliocostalis lumborum, and multifidus were recorded bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results. No difference in the endurance capacity was found between back pain and control groups. At the initial period of the exertion, back pain patients demonstrated a statistical trend (P = 0.058) of greater sagittal coupling torque as well as lower activity of rectus abdominis and multifidus and higher activity in external oblique. During the fatigue process similar changes of coupling torque were demonstrated in both sagittal and coronal planes, but a smaller fatigue rate for right external oblique, increase in median frequency for latissimus dorsi, and lesser increase in activity for back muscles were found in the back pain group compared with the control group. Conclusions. Alterations in electromyographic activation and fatigue rates of abdominal and back muscles demonstrated during the fatigue process provide insights into the muscle dysfunctions in back pain and may help clinicians to devise more rational treatment strategies.
Resumo:
The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3. 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fen immediately after the bench-stepping exercise to 88 +/- 2% (mean SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p < 0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.
Resumo:
Developments in computer and three dimensional (3D) digitiser technologies have made it possible to keep track of the broad range of data required to simulate an insect moving around or over the highly heterogeneous habitat of a plant's surface. Properties of plant parts vary within a complex canopy architecture, and insect damage can induce further changes that affect an animal's movements, development and likelihood of survival. Models of plant architectural development based on Lindenmayer systems (L-systems) serve as dynamic platforms for simulation of insect movement, providing ail explicit model of the developing 3D structure of a plant as well as allowing physiological processes associated with plant growth and responses to damage to be described and Simulated. Simple examples of the use of the L-system formalism to model insect movement, operating Lit different spatial scales-from insects foraging on an individual plant to insects flying around plants in a field-are presented. Such models can be used to explore questions about the consequences of changes in environmental architecture and configuration on host finding, exploitation and its population consequences. In effect this model is a 'virtual ecosystem' laboratory to address local as well as landscape-level questions pertinent to plant-insect interactions, taking plant architecture into account. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Objective: To examine the effect of the application of tape over the patella on the onset of electromyographic (EMG) activity of vastus medialis obliquus (VMO) relative to vastus lateralis (VL) in participants with and without patellofemoral pain syndrome (PFPS). Design: Randomised within subject. Settings: University laboratory. Participants: Ten participants with PFPS and 12 asymptomatic controls. Interventions: Three experimental taping conditions: no tape, therapeutic tape, and placebo tape. Main Outcome Measures: Electromyographic onset of VMO and VL assessed during the concentric and eccentric phases of a stair stepping task. Results: When participants with PFPS completed the stair stepping task, the application of therapeutic patellar tape was found to alter the temporal characteristics of VMO and VL activation, whereas placebo tape had no effect. In contrast, there was no change in the EMG onset of VMO and VL with the application of placebo or therapeutic tape to the knee in the asymptomatic participants. Conclusions: These data support the use of patellar taping as an adjunct to rehabilitation in people with PFPS.
Resumo:
This article analyzes physical symptoms experienced by mid-age Australian women in different stages of the menopause transition. A total of 8,623 women, aged 45 to 50 years in 1996, who participated the mid-age cohort of the Australian Longitudinal Study on Women's Health, completed Survey I in 1996 and Survey 2 in 1998. Women were assigned to I of 6 menopause groups according to their menopausal status at Surveys 1 and 2, and compared on symptoms experienced at Surveys I and 2, adjusted for lifestyle, behavioral and demographic factors. At Survey 1, the most commonly reported symptoms were headaches, back pain, stiff joints, tiredness, and difficulty sleeping. Perimenopausal women were more likely than premenopausal or postmenopausal women to report these symptoms. Hot flushes and night sweats were more common among postmenopausal women. Compared with those who remained premenopausal, women who were in the early stages of menopause or perimenopausal were more likely to report tiredness, stiff joints, difficulty sleeping, and hot flushes at Survey 2. Women who remained perimenopausal were also more likely to report back pain and leaking urine. Compared with premenopausal women, odds ratios for night sweats increased for women in consecutive stages of the menopause transition and remained high in the postmenopausal women.
Resumo:
Langmuir monolayer films of the tetracationic porphyrin tetrakis(octadecyl-4-pyridin ium)porphyrinatozinc(II) bromide on various salt containing subphases were analyzed using surface pressure-area isotherms and X-ray reflectivity. The use of these complementary techniques showed that the porphyrin molecules undergo changes in conformation upon compression. Two main phases were identified, one in which the porphyrin moiety is parallel to the subphase and one in which the porphyrin moiety is tilted out of the plane. The addition of different salts into the subphase brought about changes in film behaviour, which are explained in terms of a lyotropic series. Copyright (C) 2002 Society of Porphyrins,& Phthalocyanines.
Resumo:
The formation of CdS nanoparticles by reacting mixed Langmuir-Blodgett films of arachidic acid and either octadecylamine or dimethyldioctadecylammonium nitrate on a cadmium-containing subphase with hydrogen sulfide gas has resulted in the identification of a number of structural changes, observed using grazing incidence X-ray diffraction. In the case of octadecylamine, the structure after reaction is a hexagonal close-packed array of surfactant-stabilized nanoclusters, with a lattice constant of a = 17.65 Angstrom. In both octadecylamine and dimethyldioctadecylammonium nitrate films, the presence of a unit cell tilted at 38degrees to the plane of the substrate was found. Despite these changes, the average nanoparticle size was unaffected by the addition of either second component to the film.
Resumo:
Structural and surface property changes of macadamia nut-shell (MNS) char upon activation and high temperature treatment (HTT) were studied by high-resolution nitrogen adsorption, diffuse reflectance infra-red Fourier transform spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed desorption. It is found that activation of MNS char can be divided into the low extent activation which may involve the reactions of internal oxygen-containing groups and leads to the formation of comparatively uniform micropores, and the high extent activation which induces reactions between carbon and activating gas and produces a large amount of micropores. The surface functional groups (SFGs) basically increase with the increase of activation extent, but high extent activation preferentially increases the amount of -C-O and -C=O. HTT in air for a short tithe at a high temperature (1173 K) greatly increases the micropore volume and the amounts of SFGs. By appropriately choosing the activation and HTT conditions, it is possible to control both the textural structure and the type and amounts of SFG. (C) 2002 Published by Elsevier Science Ltd.
Resumo:
Purpose: Because it is believed that bone may respond to exercise differently at different ages, we compared bone responses in immature and mature rats after 12 wk of treadmill running. Methods: Twenty-two immature (5-wk-old) and 21 mature (17-wk-old) female Sprague Dawley rats were randomized into a running (trained, N = 10 immature, 9 mature) or a control group (controls, N 12 immature, 12 mature) before sacrifice 12 wk later. Rats ran on a treadmill five times per week for 60-70 min at speeds up to 26 m.min(-1). Both at baseline and after intervention, we measured total body, lumbar spine, and proximal femoral bone mineral, as well as total body soft tissue composition using dual-energy x-ray absorptiometry (DXA) in vivo. After sacrificing the animals, we measured dynamic and static histomorphometry and three-point bending strength of the tibia. Results: Running training was associated with greater differences in tibial subperiosteal area, cortical cross-sectional area, peak load, stiffness, and moment of inertia in immature and mature rats (P < 0.05). The trained rats had greater periosteal bone formation rates (P < 0.01) than controls, but there was no difference in tibial trabecular bone histomorphometry. Similar running-related gains were seen in DXA lumbar spine area (P = 0.04) and bone mineral content (BMC; P = 0.03) at both ages. For total body bone area and BMC, the immature trained group increased significantly compared with controls (P < 0.05), whereas the mature trained group gained less than did controls (P < 0.01). Conclusion: In this in vivo model, where a similar physical training program was performed by immature and mature female rats, we demonstrated that both age groups were sensitive to loading and that bone strength gains appeared to result more from changes in bone geometry than from improved material properties.
Resumo:
The widespread adoption of soil conservation technologies by farmers (notably contour hedgerows) observed in Guba, Cebu City, Philippines, is not often observed elsewhere In the country. Adoption of these technologies was because of the interaction of such phenomena as site-specific factors, appropriate extension systems, and technologies. However, lack of hedgerow maintenance, decreasing hedgerow quality, and disappearance of hedgerows raised concerns about sustainability. The dynamic nature of upland farming systems suggests the need for a location-specific farming system development framework, which provides farmers with ongoing extension for continual promotion of appropriate conservation practices.