247 resultados para Developmental biology


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A 3.9 kb DNA fragment of human osteocalcin promoter and 3.6 kb DNA fragment of the rat collagen type1a1 promoter linked with visually distinguishable GFP isomers, topaz and cyan, were used for multiplex analysis of osteoblast lineage progression. Three patterns of dual transgene, expression can be appreciated in primary bone cell cultures derived from the transgenic mice and by histology of their corresponding bones. Our data support the interpretation that strong pOBCol3.6GFPcyan alone is found in newly formed osteoblasts, while strong pOBCol3.6GFPcyan and hOC-GFPtpz are present in osteoblasts actively making a new matrix. Osteoblasts expressing strong hOC-GFPtpz and weak pOBCol3.6GF-Pcyan are also present and may or may not be producing mineralized matrix. This multiplex approach reveals the heterogeneity within the mature osteoblast population that cannot be appreciated by current histological methods. It should be useful to identify and isolate populations of cells within an osteoblast lineage as they progress through stages of differentiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The development of nervous systems involves reciprocal interactions between neurons and glia. In the Drosophila olfactory system, peripheral glial cells arise from sensory lineages specified by the basic helix- loop- helix transcription factor, Atonal. These glia wrap around the developing olfactory axons early during development and pattern the three distinct fascicles as they exit the antenna. In the moth Manduca sexta, an additional set of central glia migrate to the base of the antennal nerve where axons sort to their glomerular targets. In this work, we have investigated whether similar types of cells exist in the Drosophila antenna. Results: We have used different P( Gal4) lines to drive Green Fluorescent Protein ( GFP) in distinct populations of cells within the Drosophila antenna. Mz317:: GFP, a marker for cell body and perineural glia, labels the majority of peripheral glia. An additional similar to 30 glial cells detected by GH146:: GFP do not derive from any of the sensory lineages and appear to migrate into the antenna from the brain. Their appearance in the third antennal segment is regulated by normal function of the Epidermal Growth Factor receptor and small GTPases. We denote these distinct populations of cells as Mz317- glia and GH146- glia respectively. In the adult, processes of GH146- glial cells ensheath the olfactory receptor neurons directly, while those of the Mz317- glia form a peripheral layer. Ablation of GH146- glia does not result in any significant effects on the patterning of the olfactory receptor axons. Conclusion: We have demonstrated the presence of at least two distinct populations of glial cells within the Drosophila antenna. GH146- glial cells originate in the brain and migrate to the antenna along the newly formed olfactory axons. The number of cells populating the third segment of the antenna is regulated by signaling through the Epidermal Growth Factor receptor. These glia share several features of the sorting zone cells described in Manduca.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been suggested that growth cones navigating through the developing nervous system might display adaptation, so that their response to gradient signals is conserved over wide variations in ligand concentration. Recently however, a new chemotaxis assay that allows the effect of gradient parameters on axonal trajectories to be finely varied has revealed a decline in gradient sensitivity on either side of an optimal concentration. We show that this behavior can be quantitatively reproduced with a computational model of axonal chemotaxis that does not employ explicit adaptation. Two crucial components of this model required to reproduce the observed sensitivity are spatial and temporal averaging. These can be interpreted as corresponding, respectively, to the spatial spread of signaling effects downstream from receptor binding, and to the finite time over which these signaling effects decay. For spatial averaging, the model predicts that an effective range of roughly one-third of the extent of the growth cone is optimal for detecting small gradient signals. For temporal decay, a timescale of about 3 minutes is required for the model to reproduce the experimentally observed sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most studies on kidney development have considered the interaction of the metanephric mesenchyme and the ureteric bud to be the major inductive event that maintains tubular differentiation and branching morphogenesis. The mesenchyme produces Gdnf, which stimulates branching, and the ureteric bud stimulates continued growth of the mesenchyme and differentiation of nephrons from the induced mesenchyme. Null mutation of the Wt1 gene eliminates outgrowth of the ureteric bud, but Gdnf has been identified as a target of Pax2, but not of Wt1. Using a novel system for microinjecting and electroporating plasmid expression constructs into murine organ cultures, it has been demonstrated that Vegfa expression in the mesenchyme is regulated by Wt1. Previous studies had identified a population of Flk1-expressing cells in the periphery of the induced mesenchyme, and adjacent to the stalk of the ureteric bud, and that Vegfa was able to stimulate growth of kidneys in organ culture. Here it is demonstrated that signaling through Flk1 is required to maintain expression of Pax2 in the mesenchyme of the early kidney, and for Pax2 to stimulate expression of Gdnf. However, once Gdnf stimulates branching of the ureteric bud, the Flk1-dependent angioblast signal is no longer required to maintain branching morphogenesis and induction of nephrons. Thus, this work demonstrates the presence of a second set of inductive events, involving the mesenchymal and angioblast populations, whereby Wt1-stimulated expression of Vegfa elicits an as-yet-unidentified signal from the angioblasts, which is required to stimulate the expression of Pax2 and Gdnf, which in turn elicits an inductive signal from the ureteric bud.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene knockout studies of Kruppel-like factors (KLFs) in mice have shown essential roles in organogenesis. A screen for KLF family members in zebrafish identified many KLFs. One of these, zebrafish KLF4 (zKLF4) is the homologue of neptune, a Xenopus laevis KLF. zKLF4 is expressed from approximately 80% epiboly a patch of dorsal/anterior mesendodermal cells called the pre-polster and, subsequently, in the polster and hatching gland. Here we investigate the function of zKLF4 using morpholino-based antisense oligonucleotides. Knockdown of zKLF4 resulted in complete absence of hatching gland formation and subsequent hatching in zebrafish. In addition, there was early knockdown of expression of the pre-polster/anterior mesendoderm markers CatL, cap1, and BMP4. These results indicate zKLF4 is expressed within the pre-polster, an early mesendodermal site, and that it plays a critical role in the differentiation of these cells into hatching gland cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

From early in limb development the transcription factor Gli3 acts to define boundaries of gene expression along the anterior-posterior (AP) axis, establishing asymmetric patterns required to provide positional information. As limb development proceeds, posterior mesenchyme expression of Sonic hedgehog (Shh) regulates Gli3 transcription and post-translational processing to specify digit number and identity. The molecular cascades dependent on Gli3 at later stages of limb development, which link early patterning events with final digit morphogenesis, remain poorly characterised. By analysing the transcriptional consequences of loss of Gli3 in the anterior margin of the E11.5 and E12.5 limb bud in the polydactylous mouse mutant extra-toes (Gli3(Xt/Xt)), we have identified a number of known and novel transcripts dependent on Gli3 in the limb. In particular, we demonstrated that the genes encoding the paired box transcription factor Pax9, the Notch ligand Jagged1 and the cell surface receptor Cdo are dependent on Gli3 for correct expression in the anterior limb mesenchyme. Analysis of expression in compound Shh;Gli3 mutant mouse embryos and in both in vitro and in vivo Shh signaling assays, further defined the importance of Shh regulated processing of Gli3 in controlling gene expression. In particular Pax9 regulation by Shh and Gli3 was shown to be context dependent, with major differences between the limb and somite revealed by Shh bead implantation experiments in the chick. Jagged1 was shown to be induced by Shh in the chick limb and in a C3H10T1/2 cell based signaling assay, with Shh;Gli3 mutant analysis indicating that expression is dependent on Gli3 derepression. Our data have also revealed that perturbation of early patterning events within the Gli3(Xt/Xt), limb culminates in a specific delay of anterior chondrogenesis which is subsequently realised as extra digits. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Centrosomes in mammalian cells have recently been implicated in cytokinesis; however, their role in this process is poorly defined. Here, we describe a human coiled-coil protein, Cep55 (centrosome protein 55 kDa), that localizes to the mother centriole during interphase. Despite its association with gamma-TuRC anchoring proteins CG-NAP and Kendrin, Cep55 is not required for microtubule nucleation. Upon mitotic entry, centrosome dissociation of Cep55 is triggered by Erk2/Cdk1-dependent phosphorylation at S425 and S428. Furthermore, Cep55 locates to the midbody and plays a role in cytokinesis, as its depletion by siRNA results in failure of this process. S425/428 phosphorylation is required for interaction with Plk1, enabling phosphorylation of Cep55 at S436. Cells expressing phosphorylation-deficient mutant forms of Cep55 undergo cytokinesis failure. These results highlight the centrosome as a site to organize phosphorylation of Cep55, enabling it to relocate to the midbody to function in mitotic exit and cytokinesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serial passaging of wild-type Helicoverpa armigera, single-nucleocapsid (HaSNPV) in H. zea (HzAMI) illsect Cell Cultures results ill rapid selection for the few polyhedra (FP) phenotype. A unique HaSNPV mutant (ppC19) was isolated through plaque purification that exhibited a partial many polyhedra (MP) and FP phenotype. Oil serial passaging in suspension cell cultures, ppC19 produced fivefold more polyhedra than a typical FP mutant (FP8AS) but threefold less polyhedra than the wild-type virus. Most importantly, the polyhedra of ppC19 exhibited MP-like virion occlusion. Furthermore, ppC19 produced the same amount of budded virus (BV) as the FP mutant, which was fivefold higher than that of the wild-type virus. This selective advantage was likely to explain its relative stability in polyhedra production for six passages when compared with the wild-type Virus. However, subsequent passaging of ppC19 resulted in a steel) decline in both BV and polyhedra yields, which was also experienced by FP8AS and the wild-type virus Lit high passage numbers. Genomic deoxyribonueleic Licid profiling of the latter suggested that defective interfering particles (DIPS) were implicated in this phenomenon and represented another Undesirable mutation during serial passaging of HaSNPV Hence, a strategy to isolate HaSNPV Clones that exhibited MP-like polyhedra production but FP-like BV production, coupled with low multiplicities of infection during scale-up to avoid accumulation of DIPS, could prove commerically invaluable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The human brain assembles an incredible network of over a billion neurons. Understanding how these connections form during development in order for the brain to function properly is a fundamental question in biology. Much of this wiring takes place during embryonic development. Neurons are generated in the ventricular zone, migrate out, and begin to differentiate. However, neurons are often born in locations some distance from the target cells with which they will ultimately form connections. To form connections, neurons project long axons tipped with a specialized sensing device called a growth cone. The growing axons interact directly with molecules within the environment through which they grow. In order to find their targets, axonal growth cones use guidance molecules that can either attract or repel them. Understanding what these guidance cues are, where they are expressed, and how the growth cone is able to transduce their signal in a directionally specific manner is essential to understanding how the functional brain is constructed. In this chapter, we review what is known about the mechanisms involved in axonal guidance. We discuss how the growth cone is able to sense and respond to its environment and how it is guided by pioneering cells and axons. As examples, we discuss current models for the development of the spinal cord, the cerebral cortex, and the visual and olfactory systems. (c) 2005, Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the embryonic forebrain, pioneer axons establish a simple topography of dorsoventral and longitudinal tracts. The cues used by these axons during the initial formation of the axon scaffold remain largely unknown. We have investigated the axon guidance role of Neogenin, a member of the immunoglobulin (Ig) superfamily that binds to the chemoattractive ligand Netrin-1, as well as to the chemorepulsive ligand repulsive guidance molecule (RGMa). Here, we show strong expression of Neogenin and both of its putative ligands in the developing Xenopus forebrain. Neogenin loss-of-function mutants revealed that this receptor was essential for axon guidance in an early forming dorsoventral brain pathway. Similar mutant phenotypes were also observed following loss of either RGMa or Netrin-1. Simultaneous partial knock downs of these molecules revealed dosage-sensitive interactions and confirmed that these receptors and ligands were acting in the same pathway. The results provide the first evidence that Neogenin acts as an axon guidance molecule in vivo and support a model whereby Neogenin-expressing axons respond to a combination of attractive and repulsive cues as they navigate their ventral trajectory. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interaction of Eph receptor tyrosine kinases with their membrane bound ephrin ligands initiates bidirectional signaling events that regulate cell migratory and adhesive behavior. Whole-mount in situ hybridization revealed overlapping expression of the Epha1 receptor and its high-affinity ligands ephrin A1 (Efna1) and ephrin A3 (Efna3) in the primitive streak and the posterior paraxial mesoderm during early mouse development. These results show complex and dynamic expression for all three genes with expression domains that are successively complementary, overlapping, and divergent. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many instances, kidney dysgenesis results as a secondary consequence to defects in the development of the ureter. Through the use of mouse genetics a number of genes associated with such malformations have been identified, however, the cause of many other abnormalities remain unknown. In order to identify novel genes involved in ureter development we compared gene expression in embryonic day (E) 12.5, E15.5 and postnatal day (P) 75 ureters using the Compugen mouse long oligo microarrays. A total of 248 genes were dynamically upregulated and 208 downregulated between E12.5 and P75. At E12.5, when the mouse ureter is comprised of a simple cuboidal epithelium surrounded by ureteric mesenchyme, genes previously reported to be expressed in the ureteric mesenchyme, foxC1 and foxC2 were upregulated. By E15.5 the epithelial layer develops into urothelium, impermeable to urine, and smooth muscle develops for the peristaltic movement of urine towards the bladder. The development of these two cell types coincided with the upregulation of UPIIIa, RAB27b and PPAR gamma reported to be expressed in the urothelium, and several muscle genes, Acta1, Tnnt2, Myocd, and Tpm2. In situ hybridization identified several novel genes with spatial expression within the smooth muscle, Acta1; ureteric mesenchyme and smooth muscle, Thbs2 and Co15a2; and urothelium, Kcnj8 and Adh1. This study marks the first known report defining global gene expression of the developing mouse ureter and will provide insight into the molecular mechanisms underlying kidney and lower urinary tract malformations. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sex determination represents a critical bifurcation in the road of embryonic development. It is based on a finely regulated network of gene activity, as well as protein-protein interactions and activation or silencing of signaling pathways. Despite the identification of a number of critical genes, many aspects of the molecular cascade that drives the differentiation of the embryonic gonad into either a testis or an ovary remain poorly understood. To identify new proteins involved in this cascade, we employed two-dimensional gel electrophoresis and mass spectrometry to compare the protein expression profiles of fetal mouse testes and ovaries. Three proteins, hnRPA1, TRA1, and HSC71, were found to be expressed in a male-specific manner and this expression was confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization. Moreover, HSC71 was found to be hyperphosphorylated in male compared to female gonads, emphasizing the advantage of the proteomic approach in allowing the detection of posttranslational modifications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The molecular mechanisms behind the entry of the primordial follicle into the growing follicle pool remain poorly understood. To investigate this process further, a microarray-based comparison was undertaken between 2-day postpartum mouse ovaries consisting of primordial follicles/naked oocytes only and those with both primordial follicles and newly activated follicles (7-day postpartum). Gene candidates identified included the chemoattractive cytokine stromal derived factor-1 (SDF1) and its receptor CXCR4. SDF1 and CXCR4 have been implicated in a variety of physiological processes including the migration of embryonic germ cells to the gonads. SDF1-alpha expression increased with the developmental stage of the follicle. Embryonic expression was found to be dichotomous post-genii cell migration, with low expression in the female. Immunohistochemical studies nonetheless indicate that the autocrine pattern of expression ligand and receptor begins during embryonic life. Addition of recombinant SDF1-alpha to neonatal mouse ovaries in vitro resulted in significantly higher follicle densities than for control ovaries. TUNEL analysis indicated no detectable difference in populations of apoptotic cells of treated or control ovaries. Treated ovaries also contained a significantly lower percentage of activated follicles as determined by measurement of oocyte diameter and morphological analysis. Treatment of cultured ovaries with an inhibitor of SDF1-alpha, AMD3100, ablated the effect of SDF1-alpha. By retaining follicles in an unactivated state, SDF1/CXCR4 signaling may play an important role in maintaining the size and longevity of the primordial follicle pool. (c) 2006 Elsevier Inc. All rights reserved.