194 resultados para DESIGN BASIS ACCIDENTS
Resumo:
A combination of modelling and analysis techniques was used to design a six component force balance. The balance was designed specifically for the measurement of impulsive aerodynamic forces and moments characteristic of hypervelocity shock tunnel testing using the stress wave force measurement technique. Aerodynamic modelling was used to estimate the magnitude and distribution of forces and finite element modelling to determine the mechanical response of proposed balance designs. Simulation of balance performance was based on aerodynamic loads and mechanical responses using convolution techniques. Deconvolution was then used to assess balance performance and to guide further design modifications leading to the final balance design. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This study investigates the hierarchy of cytotoxic T cell (CTL) responses to twelve HLA A2-restricted epitopes from the latent, lytic and structural proteins of Epstein–Barr virus (EBV) in acute infectious mononucleosis and in healthy seropositive donors and the relative immunogenecity of these epitopes in transgenic mice. Responses to the lytic epitope were uniformly strong in all healthy seropositive individuals and acute infectious mononucleosis donors while moderate or low responses were observed to the latent and structural epitopes, respectively in both groups studied. In contrast, when HLA A2/Kb transgenic mice were immunised with these peptide epitopes, CTL responses were observed to all epitopes with a maximal response to the epitopes within the structural proteins and low to moderate responses to the latent epitopes. This hierarchy of CTL responses in mice was also reflected in an MHC stabilisation analysis. These contrasting CTL responses in humans following natural infection compared to the immunogenicity of these epitopes and their ability to stabilise MHC may need to be considered when designing an EBV vaccine.
Resumo:
The cystine knot structural motif is present in peptides and proteins from a variety of species, including fungi, plants, marine molluscs. insects and spiders. It comprises an embedded ring formed by two disulfide bonds and their connecting backbone segments which is threaded by a third disulfide bond. It is invariably associated with nearby beta-sheet structure and appears to be a highly efficient motif for structure stabilization. Because of this stability it makes an ideal framework for molecular engineering applications. In this review we summarize the main structural features of the cystine knot motif, focussing on toxin molecules containing either the inhibitor cystine knot or the cyclic cystine knot. Peptides containing these motifs are 26-48 residues long and include ion channel blockers, haemolytic agents, as well as molecules having antiviral and antibacterial activities. The stability of peptide toxins containing the cystine knot motif, their range of bioactivities and their unique structural scaffold can be harnessed for molecular engineering applications and in drug design. Applications of cystine knot molecules for the treatment of pain. and their potential use in antiviral and antibacterial applications are described. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this study was to determine the mechanism by which the aged garlic extract Kyolic has a protective effect against atherosclerosis. Plasma cholesterol of rabbits fed a 1% cholesterol-enriched diet for 6 wk was not reduced by supplementation with 800 muL Kyolic/(kg body . d). In spite of this, Kyolic reduced by 64% (P < 0.05) the surface area of the thoracic aorta covered by fatty streaks and significantly reduced aortic arch cholesterol. Kyolic also significantly inhibited by 50% the development of thickened, lipid-filled lesions in preformed neointimas produced by Fogarty 2F balloon catheter injury of the right carotid artery in cholesterol-fed rabbits. In vitro studies found that Kyolic completely prevented vascular smooth muscle phenotypic change from the contractile. high volume fraction of filament (V(v)myo) state, and inhibited proliferation of smooth muscle cells in the synthetic state with a 50% effective dose (ED50) of 0.2%. Kyolic also slightly inhibited the accumulation of lipid in cultured macrophages but not smooth muscle, and had no effect an the expression of adhesion molecules on the surface of the endothelium or the adherence of leukocytes. It is concluded that Kyolic exerts antiatherogenic effects through inhibition of smooth muscle phenotypic change and proliferation, and by another (unclarified) effect on lipid accumulation in the artery wall.
Resumo:
1. There are a variety of methods that could be used to increase the efficiency of the design of experiments. However, it is only recently that such methods have been considered in the design of clinical pharmacology trials. 2. Two such methods, termed data-dependent (e.g. simulation) and data-independent (e.g. analytical evaluation of the information in a particular design), are becoming increasingly used as efficient methods for designing clinical trials. These two design methods have tended to be viewed as competitive, although a complementary role in design is proposed here. 3. The impetus for the use of these two methods has been the need for a more fully integrated approach to the drug development process that specifically allows for sequential development (i.e. where the results of early phase studies influence later-phase studies). 4. The present article briefly presents the background and theory that underpins both the data-dependent and -independent methods with the use of illustrative examples from the literature. In addition, the potential advantages and disadvantages of each method are discussed.
Resumo:
Objective: To describe and analyse the study design and manuscript deficiencies in original research articles submitted to Emergency Medicine. Methods: This was a retrospective, analytical study. Articles were enrolled if the reports of the Section Editor and two reviewers were available. Data were extracted from these reports only. Outcome measures were the mean number and nature of the deficiencies and the mean reviewers’ assessment score. Results: Fifty-seven articles were evaluated (28 accepted for publication, 19 rejected, 10 pending revision). The mean (± SD) number of deficiencies was 18.1 ± 6.9, 16.4 ± 6.5 and 18.4 ± 6.7 for all articles, articles accepted for publication and articles rejected, respectively (P = 0.31 between accepted and rejected articles). The mean assessment scores (0–10) were 5.5 ± 1.5, 5.9 ± 1.5 and 4.7 ± 1.4 for all articles, articles accepted for publication and articles rejected, respectively. Accepted articles had a significantly higher assessment score than rejected articles (P = 0.006). For each group, there was a negative correlation between the number of deficiencies and the mean assessment score (P > 0.05). Significantly more rejected articles ‘… did not further our knowledge’ (P = 0.0014) and ‘… did not describe background information adequately’ (P = 0.049). Many rejected articles had ‘… findings that were not clinically or socially significant’ (P = 0.07). Common deficiencies among all articles included ambiguity of the methods (77%) and results (68%), conclusions not warranted by the data (72%), poor referencing (56%), inadequate study design description (51%), unclear tables (49%), an overly long discussion (49%), limitations of the study not described (51%), inadequate definition of terms (49%) and subject selection bias (40%). Conclusions: Researchers should undertake studies that are likely to further our knowledge and be clinically or socially significant. Deficiencies in manuscript preparation are more frequent than mistakes in study design and execution. Specific training or assistance in manuscript preparation is indicated.
Resumo:
Our understanding of the diversity of mammalian life histories is based almost exclusively on eutherian mammals, in which the slow-fast continuum persists even after controlling for effects of body size and phylogeny. In this paper, we use modern comparative methods to test the extent to which this eutherian-based framework can be extrapolated to metatherian mammals. First, we examine the pattern of covariation among life history traits, and second, we test for correlations between variation in life history and variation in six candidate ecological variables: type of diet, extent of intraspecific competition, risk of juvenile mortality, diurnal pattern of activity, arboreality, and rainfall pattern. Even when controlling for body size and phylogeny, we observe a slow-fast continuum in metatherian mammals. Some parameters involved are different from those identified by studies of eutherians, but the underlying relationships among longevity, fecundity, and age at maturity persist. We also show that overall variation in a key life history variable, reproductive output (measured by annual reproductive rate and litter size), is significantly related to variation in type of diet, with a foliage-rich diet being associated with low fecundity. This is interesting because, although ecological correlations have been found within some eutherian subgroups, modern comparative approaches have failed to reveal robust ecological correlates of overall life history diversity in eutherians. Copyright ESA. All rights reserved.
Resumo:
It is believed that surface instabilities can occur during the extrusion of linear low density polyethylene due to high extensional stresses at the exit of the die. Local crack development can occur at a critical stress level when melt rupture is reached. This high extensional stress results from the rearrangement of the flow at the boundary transition between the wall exit and the free surface. The stress is highest at the extrudate surface and decreases into the bulk of the material. The location of the region where the critical level is reached can determine the amplitude of the extrudate surface distortion, This paper studies the effect of wall slip on the numerically simulated extensional stress level at the die exit and correlates this to the experimentally determined amplitude of the surface instability. The effect of die exit radius and die wall roughness on extrusion surface instabilities is also correlated to the exit stress level in the same way. Whereas full slip may completely suppress the surface instability, a reduction in the exit stress level and instability amplitude is also shown for a rounded die exit and a slight increase in instability is shown to result from a rough die wall. A surface instability map demonstrates how the shear rate for onset of extrusion surface instabilities can be predicted on the basis of melt strength measurements and simulated stress peaks at the exit of the die. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
HLA-A*0201 transgenic, H-2D(b)/mouse beta2-microglobulin double-knockout mice were used to compare and optimize the immunogenic potential of 17HIV 1-derived, HLA-A0201-restricted epitopic peptides. A tyrosine substitution in position 1 of the epitopic peptides, which increases both their affinity for and their HLA-A0201 molecule stabilizing capacity, was introduced in a significant proportion, having verified that such modifications enhance their immunogenicity in respect of their natural antigenicity. Based on these results, a 13-polyepitope construct was inserted in the pre-S2 segment of the hepatitis B middle glycoprotein and used for DNA immunization. Long-lasting CTL responses against most of the inserted epitopes could be elicited simultaneously in a single animal with cross-recognition in several cases of their most common natural variants.
Resumo:
Ontogenetic changes in the photoresponse of larvae from the demosponge Reneira sp. were studied by analyzing the swimming paths of individual larvae exposed to diffuse white light. Larvae swam upward upon release from the adult, but were negatively phototactic until at least 12 hours after release. The larval photoreceptors are presumed to be a posterior ring of columnar monociliated epithelial cells that possess 120-mum-long cilia and pigment-filled protrusions. A sudden increase in light intensity caused these cilia to become rigidly straight. If the light intensity remained high, the cilia gradually bent over the pigmented vesicles in the adjacent cytoplasm, and thus covered one entire pole of the larva. The response was reversed upon a sudden decrease in light intensity. The ciliated cells were sensitive to changes in light intensity in larvae of all ages. This response is similar to the shadow response in tunicate larvae or the shading of the photoreceptor in Euglena and is postulated to allow the larvae to steer away from brighter light to darker areas, such as under coral rubble-the preferred site of the adult sponge on the reef flat. In the absence of a coordinating system in cellular sponges, the spatial organization and autonomous behavior of the pigmented posterior cells control the rapid responses to light shown by these larvae.
Resumo:
An inverse, current density mapping (CDM) method has been developed for the design of elliptical cross-section MRI magnets. The method provides a rapid prototyping system for unusual magnet designs, as it generates a 3D current density in response to a set of target field and geometric constraints. The emphasis of this work is on the investigation of new elliptical coil structures for clinical MRI magnets. The effect of the elliptical aspect ratio on magnet performance is investigated. Viable designs are generated for symmetric, asymmetric and open architecture elliptical magnets using the new method. Clinically relevant attributes such as reduced stray field and large homogeneous regions relative to total magnet length are included in the design process and investigated in detail. The preliminary magnet designs have several novel features.
Resumo:
In this work, a new method of optimization is successfully applied to the theoretical design of compact, actively shielded, clinical MRI magnets. The problem is formulated as a two-step process in which the desired current densities on multiple, cc-axial surface layers are first calculated by solving Fredholm equations of the first kind. Non-linear optimization methods with inequality constraints are then invoked to fit practical magnet coils to the desired current densities. The current density approach allows rapid prototyping of unusual magnet designs. The emphasis of this work is on the optimal design of short, actively-shielded MRI magnets for whole-body imaging. Details of the hybrid numerical model are presented, and the model is used to investigate compact, symmetric, and asymmetric MRI magnets. Magnet designs are presented for actively-shielded, symmetric magnets of coil length 1.0 m, which is considerably shorter than currently available designs of comparable dsv size. Novel, actively-shielded, asymmetric magnet designs are also presented in which the beginning of a 50-cm dsv is positioned just 11 cm from the end of the coil structure, allowing much improved access to the patient and reduced patient claustrophobia. Magn Reson Med 45:331540, 2001. (C) 2001 Wiley-Liss, Inc.
Resumo:
New designs for force-minimized compact high-field clinical MRI magnets are described. The design method is a modified simulated annealing (SA) procedure which includes Maxwell forces in the error function to be minimized. This permits an automated force reduction in the magnet designs while controlling the overall dimensions of the system. As SA optimization requires many iterations to achieve a final design, it is important that each iteration in the procedure is rapid. We have therefore developed a rapid force calculation algorithm. Novel designs for short 3- and 4-T clinical MRI systems are presented in which force reduction has been invoked. The final designs provide large homogeneous regions and reduced stray fields in remarkable short magnets. A shielded 4-T design that is approximately 30% shorter than current designs is presented. This novel magnet generates a full 50-cm diameter homogeneous region.