213 resultados para Continuous phase modulation
Resumo:
The present research investigated attentional blink startle modulation at lead intervals of 60, 240 and 3500 ms. Letters printed in Gothic or standard fonts, which differed in rated interest, but not valence, served as lead stimuli. Experiment I established that identifying letters as vowels/consonants took longer than reading the letters and that performance in both tasks was slower if letters were printed in Gothic font. In Experiment 2, acoustic blink eliciting stimuli were presented 60, 240 and 3500 ms after onset of the letters in Gothic and in standard font and during intertrial intervals. Half the participants (Group Task) were asked to identify the letters as vowels/consonants whereas the others (Group No-Task) did not perform a task. Relative to control responses, blinks during letters were facilitated at 60 and 3500 ms lead intervals and inhibited at the 240 ms lead interval for both conditions in Group Task. Differences in blink modulation across lead intervals were found in Group No-Task only during Gothic letters with blinks at the 3500 ms lead interval facilitated relative to control blinks. The present results confirm previous findings indicating that attentional processes can modulate startle at very short lead intervals. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The present research investigated blink startle modulation during the anticipation of pleasant, unpleasant, or neutral pictures. In Experiment 1 (N = 18), participants were presented with three different tone-picture pairings. Tones differed in pitch and were followed by pleasant, neutral or unpleasant pictures. Acoustic blink reflexes were elicited during some tones and during stimulus free intervals. Blink facilitation during tones that preceded pleasant and unpleasant pictures was larger than during the tone that preceded neutral pictures. Experiment 2 (N = 10) assessed whether this difference was due to a difference in the presentation frequency of the three conditions. No difference in blink facilitation between the conditions was found when pictures of flowers and mushrooms replaced the pleasant and unpleasant pictures, indicating that picture content was instrumental in causing the differential blink facilitation in Experiment 1. The results from Experiment 1 seem to indicate that startle modulation during the anticipation of pictorial material reflects the interest in or the arousal associated with the pictures rather than picture valence.
Resumo:
Two experiments were conducted to assess simultaneously the effects of attentional and emotional processes on startle eyeblink modulation. In each experiment, participants were presented with a pleasant and an unpleasant picture. Half the participants were asked to attend to the pleasant picture and to ignore the unpleasant picture, whereas the reverse was the case for the other participants. Startle probes were presented at 3500 and 4500 ins after stimulus onset in Experiment I and at 250, 750, and 4450 ms after stimulus onset and 950 ms after stimulus offset in Experiment 2. Attentional processing affected startle eyeblink modulation and electrodermal responses in both experiments, However, effects of picture valence on startle eyeblink modulation were found only in Experiment 2. The results confirm the utility of startle eyeblink modulation as an index of attentional and emotional processing. They also illustrate that procedural characteristics, such as the nature of the lead intervals and how attention and emotion are operationalized, can determine whether emotional or attentional processes will be reflected in startle eyeblink.
The acquisition of movement skills: Practice enhances the dynamic stability of bimanual coordination
Resumo:
During bimanual movements, two relatively stable inherent patterns of coordination (in-phase and anti-phase) are displayed (e.g., Kelso, Am. J. Physiol. 246 (1984) R1000). Recent research has shown that new patterns of coordination can be learned. For example, following practice a 90 degrees out-of-phase pattern can emerge as an additional, relatively stable, state (e.g., Zanone & Kelso, J. Exp. Psychol.: Human Performance and Perception 18 (1992) 403). On this basis, it has been concluded that practice leads to the evolution and stabilisation of the newly learned pattern and that this process of learning changes the entire attractor layout of the dynamic system. A general feature of such research has been to observe the changes of the targeted pattern's stability characteristics during training at a single movement frequency. The present study was designed to examine how practice affects the maintenance of a coordinated pattern as the movement frequency is scaled. Eleven volunteers were asked to perform a bimanual forearm pronation-supination task. Time to transition onset was used as an index of the subjects' ability to maintain two symmetrically opposite coordinated patterns (target task - 90 degrees out-of-phase - transfer task - 270 degrees out-of-phase). Their ability to maintain the target task and the transfer task were examined again after five practice sessions each consisting of 15 trials of only the 90 degrees out-of-phase pattern. Concurrent performance feedback (a Lissajous figure) was available to the participants during each practice trial. A comparison of the time to transition onset showed that the target task was more stable after practice (p = 0.025). These changes were still observed one week (p = 0.05) and two months (p = 0.075) after the practice period. Changes in the stability of the transfer task were not observed until two months after practice (p = 0.025). Notably, following practice, transitions from the 90 degrees pattern were generally to the anti-phase (180 degrees) pattern, whereas, transitions from the 270 degrees pattern were to the 90 degrees pattern. These results suggest that practice does improve the stability of a 90 degrees pattern, and that such improvements are transferable to the performance of the unpractised 270 degrees pattern. In addition, the anti-phase pattern remained more stable than the practised 90 degrees pattern throughout. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Modulations in the excitability of spinal reflex pathways during passive rhythmic movements of the lower limb have been demonstrated by a number of previous studies [4]. Less emphasis has been placed on the role of supraspinal pathways during passive movement, and on tasks involving the upper limb. In the present study, transcranial magnetic stimulation (TMS) was delivered to subjects while undergoing passive flexion-extension movements of the contralateral wrist. Motor evoked potentials (MEPs) of flexor carpi radialis (FCR) and abductor pollicus brevis (APB) muscles were recorded. Stimuli were delivered in eight phases of the movement cycle during three different frequencies of movement. Evidence of marked modulations in pathway excitability was found in the MEP amplitudes of the FCR muscle, with responses inhibited and facilitated from static values in the extension and flexion phases, respectively. The results indicated that at higher frequencies of movement there was greater modulation in pathway excitability. Paired-pulse TMS (sub-threshold conditioning) at short interstimulus intervals revealed modulations in the extent of inhibition in MEP amplitude at high movement frequencies. In the APE muscle, there was some evidence of phasic modulations of response amplitude, although the effects were less marked than those observed in FCR. It is speculated that these modulatory effects are mediated via Ia afferent pathways and arise as a consequence of the induced forearm muscle shortening and lengthening. Although the level at which this input influences the corticomotoneuronal pathway is difficult to discern, a contribution from cortical regions is suggested. (C) 2001 Published by Elsevier Science B.V.
Resumo:
The phase estimation algorithm is so named because it allows an estimation of the eigenvalues associated with an operator. However, it has been proposed that the algorithm can also be used to generate eigenstates. Here we extend this proposal for small quantum systems, identifying the conditions under which the phase-estimation algorithm can successfully generate eigenstates. We then propose an implementation scheme based on an ion trap quantum computer. This scheme allows us to illustrate two simple examples, one in which the algorithm effectively generates eigenstates, and one in which it does not.
Resumo:
We obtain the finite-temperature unconditional master equation of the density matrix for two coupled quantum dots (CQD's) when one dot is subjected to a measurement of its electron occupation number using a point contact (PC). To determine how the CQD system state depends on the actual current through the PC device, we use the so-called quantum trajectory method to derive the zero-temperature conditional master equation. We first treat the electron tunneling through the PC barrier as a classical stochastic point process (a quantum-jump model). Then we show explicitly that our results can be extended to the quantum-diffusive limit when the average electron tunneling rate is very large compared to the extra change of the tunneling rate due to the presence of the electron in the dot closer to the PC. We find that in both quantum-jump and quantum-diffusive cases, the conditional dynamics of the CQD system can be described by the stochastic Schrodinger equations for its conditioned state vector if and only if the information carried away from the CQD system by the PC reservoirs can be recovered by the perfect detection of the measurements.
Resumo:
The application of the N-1-(4,4-dimethyl-2,6-dioxocyclohexylidene)ethyl (Dde) linker for the solid-phase synthesis of oligosaccharides is described. The oligosaccharide products can be cleaved from the resin by hydrazine, ammonia or primary amines, but the linker is stable under the conditions of oligosaccharide synthesis. The first sugar can be attached to the resin linker via a vinylogous amide bond, or by ether linkage using a p-aminobenzyl alcohol converter. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose: The phenotype of vascular smooth muscle cells (SMCs) is altered in several arterial pathologies, including the neointima formed after acute arterial injury. This study examined the time course of this phenotypic change in relation to changes in the amount and distribution of matrix glycosaminoglycans. Methods: The immunochemical staining of heparan sulphates (HS) and chondroitin sulphates (CS) in the extracellular matrix of the arterial wall was examined at early points after balloon catheter injury of the rabbit carotid artery. SMC phenotype was assessed by means of ultrastructural morphometry of the cytoplasmic volume fraction of myofilaments. The proportions of cell and matrix components in the media were analyzed with similar morphometric techniques. Results: HS and CS were shown in close association with SMCs of the uninjured arterial media as well as being more widespread within the matrix. Within 6 hours after arterial injury, there was loss of the regular pericellular distribution of both HS and CS, which was associated with a significant expansion in the extracellular space. This preceded the change in ultrastructural phenotype of the SMCs. The glycosaminoglycan loss was most exaggerated at 4 days, after which time the HS and CS reappeared around the medial SMCs. SMCs of the recovering media were able to rapidly replace their glycosaminoglycans, whereas SMCs of the developing neointima failed to produce HS as readily as they produced CS. Conclusions: These studies indicate that changes in glycosaminoglycans of the extracellular matrix precede changes in SMC phenotype after acute arterial injury. In the recovering arterial media, SMCs replace their matrix glycosaminoglycans rapidly, whereas the newly established neointima fails to produce similar amounts of heparan sulphates.
Resumo:
Starting from the two-mode Bose-Hubbard model, we derive an exact version of the standard Mathieu equation governing the wave function of a Josephson junction. For a finite number of particles N, we find an additional cos 2 phi term in the potential. We also find that the inner product in this representation is nonlocal in phi. Our model exhibits phenomena, such as pi oscillations, which are not found in the standard phase model, but have been predicted from Gross-Pitaevskii mean-field theory.
Resumo:
This article modifies the usual form of the Dubinin-Radushkevich pore-filling model for application to liquid-phase adsorption data, where large molecules are often involved. In such cases it is necessary to include the repulsive part of the energy in the micropores, which is accomplished here by relating the pore potential to the fluid-solid interaction potential. The model also considers the nonideality of the bulk liquid phase through the UNIFAC activity coefficient model, as well as structural heterogeneity of the carbon. For the latter the generalized adsorption integral is used while incorporating the pore-size distribution obtained by density functional theory analysis of argon adsorption data. The model is applied here to the interpretation of aqueous phase adsorption isotherms of three different esters on three commercial activated carbons. Excellent agreement between the model and experimental data is observed, and the fitted Lennard-Jones size parameter for the adsorbate-adsorbate interactions compares well with that estimated from known critical properties, supporting the modified approach. On the other hand, the model without consideration of bulk nonideality, or when using classical models of the characteristic energy, gives much poorer bts of the data and unrealistic parameter values.
Resumo:
The characterization of three commercial activated carbons was carried out using the adsorption of various compounds in the aqueous phase. For this purpose the generalized adsorption isotherm was employed, and a modification of the Dubinin-Radushkevich pore filling model, incorporating repulsive contributions to the pore potential as well as bulk liquid phase nonideality, was used as the local isotherm. Eight different flavor compounds were used as adsorbates, and the isotherms were jointly fitted to yield a common pore size distribution for each carbon. The bulk liquid phase nonideality was incorporated through the UNIFAC activity coefficient model, and the repulsive contribution to the pore potential was incorporated through the Steele 10-4-3 potential model. The mean micropore network coordination number for each carbon was also determined from the fitted saturation capacity based on percolation theory. Good agreement between the model and the experimental data was observed. In addition, excellent agreement between the bimodal gamma pore size distribution and density functional theory-cum-regularization-based pore size distribution obtained by argon adsorption was also observed, supporting the validity of the model. The results show that liquid phase adsorption, using adsorptive molecules of different sizes, can be an effective means of characterizing the pore size distribution as well as connectivity. Alternately, if the carbon pore size distribution is independently known, the method can be used to measure critical molecular sizes. (C) 2001 Elsevier Science.
Resumo:
A modification of the Dubinin-Radushkevich pore filling model by incorporation of the repulsive contribution to the pore potential, and of bulk non-ideality, is proposed in this paper for characterization of activated carbon using liquid phase adsorption. For this purpose experiments have been performed using ethyl propionate, ethyl butyrate, and ethyl isovalerate as adsorbates and the microporous-mesoporous activated carbons Filtrasorb 400, Norit ROW 0.8 and Norit ROX 0.8 as adsorbents. The repulsive contribution to the pore potential is incorporated through a Lennard-Jones intermolecular potential model, and the bulk-liquid phase non-ideality through the UNIFAC activity coefficient model. For the characterization of activated carbons, the generalized adsorption isotherm is utilized with a bimodal gamma function as the pore size distribution function. It is found that the model can represent the experimental data very well, and significantly better than when the classical energy-size relationship is used, or when bulk non-ideality is neglected. Excellent agreement between the bimodal gamma pore size distribution and DFT-cum-regularization based pore size distribution is also observed, supporting the validity of the proposed model. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Objectives: To investigate the pharmacokinetics of intravenous ciprofloxacin 200 mg every 8 h in critically ill patients on continuous veno-venous haemodiafiltration (CVVHDF), one form of continuous renal replacement therapy (CRRT). Design and setting: Open, prospective clinical study in a multidisciplinary, intensive care unit in a university-affiliated tertiary referral hospital. Patients: Sis critically ill patients with acute renal failure on CVVHDF. Interventions: Timed blood and ultrafiltrate samples were collected to allow pharmacokinetics and clearances to be calculated of initial and subsequent doses of 200 mg intravenous ciprofloxacin. CVVHD was performed with 1 l/h of dialysate and 2 l/h of predilution filtration solution, producing 3 lih of dialysis effluent. The blood was pumped at 200 ml/min using a Gambro BMM-10 blood pump through a Hospal AN69HF haemofilter,. Measurements and results: Ten pharmacokinetic profiles were measured. The CVVHDF displayed a urea clearance of 42 +/- 3 ml/min, and removed ciprofloxacin with a clearance of 37 +/- 7 ml/min. This rate was 2-2.5 greater than previously published for ciprofloxacin in other forms of CRRT. On average the CVVHDF was responsible for clearing a fifth of all ciprofloxacin eliminated (21 +/- 10%). The total body clearance of ciprofloxacin was 12.2 +/- 4.3 l/h. The trough concentration following the initial dose was 0.7 +/- 0.3 mg/l. The area under the plasma concentration time curves over a 24-h period ranged from 21 to 55 mg .h l(-1). Conclusions: Intravenous ciprofloxacin 600 mg/day in critically ill patients using this form of CRRT produced adequate plasma levels for many resistant microbes found in intensive care units.