149 resultados para Computer Science, Interdisciplinary Applications
Resumo:
Genetic algorithms (GAs) are known to locate the global optimal solution provided sufficient population and/or generation is used. Practically, a near-optimal satisfactory result can be found by Gas with a limited number of generations. In wireless communications, the exhaustive searching approach is widely applied to many techniques, such as maximum likelihood decoding (MLD) and distance spectrum (DS) techniques. The complexity of the exhaustive searching approach in the MLD or the DS technique is exponential in the number of transmit antennas and the size of the signal constellation for the multiple-input multiple-output (MIMO) communication systems. If a large number of antennas and a large size of signal constellations, e.g. PSK and QAM, are employed in the MIMO systems, the exhaustive searching approach becomes impractical and time consuming. In this paper, the GAs are applied to the MLD and DS techniques to provide a near-optimal performance with a reduced computational complexity for the MIMO systems. Two different GA-based efficient searching approaches are proposed for the MLD and DS techniques, respectively. The first proposed approach is based on a GA with sharing function method, which is employed to locate the multiple solutions of the distance spectrum for the Space-time Trellis Coded Orthogonal Frequency Division Multiplexing (STTC-OFDM) systems. The second approach is the GA-based MLD that attempts to find the closest point to the transmitted signal. The proposed approach can return a satisfactory result with a good initial signal vector provided to the GA. Through simulation results, it is shown that the proposed GA-based efficient searching approaches can achieve near-optimal performance, but with a lower searching complexity comparing with the original MLD and DS techniques for the MIMO systems.
Resumo:
Biological wastewater treatment is a complex, multivariate process, in which a number of physical and biological processes occur simultaneously. In this study, principal component analysis (PCA) and parallel factor analysis (PARAFAC) were used to profile and characterise Lagoon 115E, a multistage biological lagoon treatment system at Melbourne Water's Western Treatment Plant (WTP) in Melbourne, Australia. In this study, the objective was to increase our understanding of the multivariate processes taking place in the lagoon. The data used in the study span a 7-year period during which samples were collected as often as weekly from the ponds of Lagoon 115E and subjected to analysis. The resulting database, involving 19 chemical and physical variables, was studied using the multivariate data analysis methods PCA and PARAFAC. With these methods, alterations in the state of the wastewater due to intrinsic and extrinsic factors could be discerned. The methods were effective in illustrating and visually representing the complex purification stages and cyclic changes occurring along the lagoon system. The two methods proved complementary, with each having its own beneficial features. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Algorithms for explicit integration of structural dynamics problems with multiple time steps (subcycling) are investigated. Only one such algorithm, due to Smolinski and Sleith has proved to be stable in a classical sense. A simplified version of this algorithm that retains its stability is presented. However, as with the original version, it can be shown to sacrifice accuracy to achieve stability. Another algorithm in use is shown to be only statistically stable, in that a probability of stability can be assigned if appropriate time step limits are observed. This probability improves rapidly with the number of degrees of freedom in a finite element model. The stability problems are shown to be a property of the central difference method itself, which is modified to give the subcycling algorithm. A related problem is shown to arise when a constraint equation in time is introduced into a time-continuous space-time finite element model. (C) 1998 Elsevier Science S.A.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
In this paper, a solution method is presented to deal with fully coupled problems between medium deformation, pore-fluid flow and heat transfer in fluid-saturated porous media having supercritical Rayleigh numbers. To validate the present solution method, analytical solutions to a benchmark problem are derived for some special cases. After the solution method is validated, a numerical study is carried out to investigate the effects of medium thermoelasticity on high Rayleigh number steady-state heat transfer and mineralization in fluid-saturated media when they are heated from below. The related numerical results have demonstrated that: (1) medium thermoelasticity has a little influence on the overall pattern of convective pore-fluid flow, but it has a considerable effect on the localization of medium deformation, pore-fluid flow, heat transfer and mineralization in a porous medium, especially when the porous medium is comprised of soft rock masses; (2) convective pore-fluid flow plays a very important role in the localization of medium deformation, heat transfer and mineralization in a porous medium. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The new technologies for Knowledge Discovery from Databases (KDD) and data mining promise to bring new insights into a voluminous growing amount of biological data. KDD technology is complementary to laboratory experimentation and helps speed up biological research. This article contains an introduction to KDD, a review of data mining tools, and their biological applications. We discuss the domain concepts related to biological data and databases, as well as current KDD and data mining developments in biology.
Resumo:
We use the finite element method to model and predict the dissipative structures of chemical species for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. In particular, we explore the conditions under which dissipative structures of the species may exist in the Brusselator type of nonequilibrium chemical reaction. Since this is the first time the finite element method and related strategies have been used to study the chemical instability problems in a fluid-saturated porous medium, it is essential to validate the method and strategies before they are put into application. For this purpose, we have rigorously derived the analytical solutions for dissipative structures of chemical species in a benchmark problem, which geometrically is a square. Comparison of the numerical solutions with the analytical ones demonstrates that the proposed numerical method and strategy are robust enough to solve chemical instability problems in a fluid-saturated porous medium. Finally, the related numerical results from two application examples indicate that both the regime and the magnitude of pore-fluid flow have significant effects on the nature of the dissipative structures that developed for a nonequilibrium chemical reaction system in a fluid-saturated porous medium. The motivation for this study is that self-organization under conditions of pore-fluid flow in a porous medium is a potential mechanism of the orebody formation and mineralization in the upper crust of the Earth. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
We use the finite element method to solve the coupled problem between convective pore-fluid flow, heat transfer and mineralization in layered hydrothermal systems with upward throughflow. In particular, we present the improved rock alteration index (IRAI) concept for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in the systems. To validate the numerical method used in the computation, analytical solutions to a benchmark problem have been derived. After the numerical method is validated, it is used to investigate the pattern of pore-fluid Aom, the distribution of temperature and the mineralization pattern of gold minerals in a layered hydrothermal system with upward throughflow. The related numerical results have demonstrated that the present concept of IRAI is useful and applicable for predicting the most probable precipitation and dissolution regions of gold (Au) minerals in hydrothermal systems. (C) 2000 Elsevier Science S.A. All rights reserved.
Resumo:
In order to use the finite element method for solving fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins effectively and efficiently, we have presented, in this paper, the new concept and numerical algorithms to deal with the fundamental issues associated with the fluid-rock interaction problems. These fundamental issues are often overlooked by some purely numerical modelers. (1) Since the fluid-rock interaction problem involves heterogeneous chemical reactions between reactive aqueous chemical species in the pore-fluid and solid minerals in the rock masses, it is necessary to develop the new concept of the generalized concentration of a solid mineral, so that two types of reactive mass transport equations, namely, the conventional mass transport equation for the aqueous chemical species in the pore-fluid and the degenerated mass transport equation for the solid minerals in the rock mass, can be solved simultaneously in computation. (2) Since the reaction area between the pore-fluid and mineral surfaces is basically a function of the generalized concentration of the solid mineral, there is a definite need to appropriately consider the dependence of the dissolution rate of a dissolving mineral on its generalized concentration in the numerical analysis. (3) Considering the direct consequence of the porosity evolution with time in the transient analysis of fluid-rock interaction problems; we have proposed the term splitting algorithm and the concept of the equivalent source/sink terms in mass transport equations so that the problem of variable mesh Peclet number and Courant number has been successfully converted into the problem of constant mesh Peclet and Courant numbers. The numerical results from an application example have demonstrated the usefulness of the proposed concepts and the robustness of the proposed numerical algorithms in dealing with fluid-rock interaction problems in pore-fluid saturated hydrothermal/sedimentary basins. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
We use the finite element method to solve coupled problems between pore-fluid flow and heat transfer in fluid-saturated porous rocks. In particular, we investigate the effects of both the hot pluton intrusion and topographically driven horizontal flow on the distributions of the pore-flow velocity and temperature in large-scale hydrothermal systems. Since general mineralization patterns are strongly dependent on distributions of both the pore-fluid velocity and temperature fields, the modern mineralization theory has been used to predict the general mineralization patterns in several realistic hydrothermal systems. The related numerical results have demonstrated that: (1) The existence of a hot intrusion can cause an increase in the maximum value of the pore-fluid velocity in the hydrothermal system. (2) The permeability of an intruded pluton is one of the sensitive parameters to control the pore-fluid flow, heat transfer and ore body formation in hydrothermal systems. (3) The maximum value of the pore-fluid velocity increases when the bottom temperature of the hydrothermal system is increased. (4) The topographically driven flow has significant effects on the pore-fluid flow, temperature distribution and precipitation pattern of minerals in hydrothermal systems. (5) The size of the computational domain may have some effects on the pore-fluid flow and heat transfer, indicating that the size of a hydrothermal system may affect the pore-fluid flow and heat transfer within the system. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
An equivalent algorithm is proposed to simulate thermal effects of the magma intrusion in geological systems, which are composed of porous rocks. Based on the physical and mathematical equivalence, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with a physically equivalent heat source. From the analysis of an ideal solidification model, the physically equivalent heat source has been determined in this paper. The major advantage in using the proposed equivalent algorithm is that the fixed finite element mesh with a variable integration time step can be employed to simulate the thermal effect of the intruded magma solidification using the conventional finite element method. The related numerical results have demonstrated the correctness and usefulness of the proposed equivalent algorithm for simulating the thermal effect of the intruded magma solidification in geological systems. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper presents a method for estimating the posterior probability density of the cointegrating rank of a multivariate error correction model. A second contribution is the careful elicitation of the prior for the cointegrating vectors derived from a prior on the cointegrating space. This prior obtains naturally from treating the cointegrating space as the parameter of interest in inference and overcomes problems previously encountered in Bayesian cointegration analysis. Using this new prior and Laplace approximation, an estimator for the posterior probability of the rank is given. The approach performs well compared with information criteria in Monte Carlo experiments. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Numerical methods are used to simulate the double-diffusion driven convective pore-fluid flow and rock alteration in three-dimensional fluid-saturated geological fault zones. The double diffusion is caused by a combination of both the positive upward temperature gradient and the positive downward salinity concentration gradient within a three-dimensional fluid-saturated geological fault zone, which is assumed to be more permeable than its surrounding rocks. In order to ensure the physical meaningfulness of the obtained numerical solutions, the numerical method used in this study is validated by a benchmark problem, for which the analytical solution to the critical Rayleigh number of the system is available. The theoretical value of the critical Rayleigh number of a three-dimensional fluid-saturated geological fault zone system can be used to judge whether or not the double-diffusion driven convective pore-fluid flow can take place within the system. After the possibility of triggering the double-diffusion driven convective pore-fluid flow is theoretically validated for the numerical model of a three-dimensional fluid-saturated geological fault zone system, the corresponding numerical solutions for the convective flow and temperature are directly coupled with a geochemical system. Through the numerical simulation of the coupled system between the convective fluid flow, heat transfer, mass transport and chemical reactions, we have investigated the effect of the double-diffusion driven convective pore-fluid flow on the rock alteration, which is the direct consequence of mineral redistribution due to its dissolution, transportation and precipitation, within the three-dimensional fluid-saturated geological fault zone system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this paper, an attempt was made to investigate a fundamental problem related to the flexural waves excited by rectangular transducers. Due to the disadvantages of the Green's function approach for solving this problem, a direct and effective method is proposed using a multiple integral transform method and contour integration technique. The explicit frequency domain solutions obtained from this newly developed method are convenient for understanding transducer behavior and theoretical optimization and experimental calibration of rectangular transducers. The time domain solutions can then be easily obtained by using the fast Fourier transform technique. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
This paper presents the multi-threading and internet message communication capabilities of Qu-Prolog. Message addresses are symbolic and the communications package provides high-level support that completely hides details of IP addresses and port numbers as well as the underlying TCP/IP transport layer. The combination of the multi-threads and the high level inter-thread message communications provide simple, powerful support for implementing internet distributed intelligent applications.