221 resultados para Community-based coral reef conservation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

From an experiment in which corals are transplanted between two depths on a Panamanian coral reef, Baker1 infers that bleaching may sometimes help reef corals to survive environmental change. Although Baker's results hint at further mechanisms by which reef-building corals may acclimatize to changing light conditions, we do not consider that the evidence supports his inference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a widely held paradigm that mangroves are critical for sustaining production in coastal fisheries through their role as important nursery areas for fisheries species. This paradigm frequently forms the basis for important management decisions on habitat conservation and restoration of mangroves and other coastal wetlands. This paper reviews the current status of the paradigm and synthesises the information on the processes underlying these potential links. In the past, the paradigm has been supported by studies identifying correlations between the areal and linear extent of mangroves and fisheries catch. This paper goes beyond the correlative approach to develop a new framework on which future evaluations can be based. First, the review identifies what type of marine animals are using mangroves and at what life stages. These species can be categorised as estuarine residents, marine-estuarine species and marine stragglers. The marine-estuarine category includes many commercial species that use mangrove habitats as nurseries. The second stage is to determine why these species are using mangroves as nurseries. The three main proposals are that mangroves provide a refuge from predators, high levels of nutrients and shelter from physical disturbances. The recognition of the important attributes of mangrove nurseries then allows an evaluation of how changes in mangroves will affect the associated fauna. Surprisingly few studies have addressed this question. Consequently, it is difficult to predict how changes in any of these mangrove attributes would affect the faunal communities within them and, ultimately, influence the fisheries associated with them. From the information available, it seems likely that reductions in mangrove habitat complexity would reduce the biodiversity and abundance of the associated fauna, and these changes have the potential to cause cascading effects at higher trophic levels with possible consequences for fisheries. Finally, there is a discussion of the data that are currently available on mangrove distribution and fisheries catch, the limitations of these data and how best to use the data to understand mangrove-fisheries links and, ultimately, to optimise habitat and fisheries management. Examples are drawn from two relatively data-rich regions, Moreton Bay (Australia) and Western Peninsular Malaysia, to illustrate the data needs and research requirements for investigating the mangrove-fisheries paradigm. Having reliable and accurate data at appropriate spatial and temporal scales is crucial for mangrove-fisheries investigations. Recommendations are made for improvements to data collection methods that would meet these important criteria. This review provides a framework on which to base future investigations of mangrove-fisheries links, based on an understanding of the underlying processes and the need for rigorous data collection. Without this information, the understanding of the relationship between mangroves and fisheries will remain limited. Future investigations of mangrove-fisheries links must take this into account in order to have a good ecological basis and to provide better information and understanding to both fisheries and conservation managers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High levels of mortality in the Mediterranean bath sponge industry have raised concerns for the future of sponge farms. Healthy sponges feed predominantly on bacteria, and many harbour a wide diversity of inter- and extra-cellular symbiotic bacteria. Here we describe the first isolation and description of a pathogenic bacterium from an infected marine sponge. Microbiological examination of tissue necrosis in the Great Barrier Reef sponge Rhopaloeides odorabile resulted in isolation of the bacterial strain NW4327. Sponges infected with strain NW4327 exhibited high levels of external tissue necrosis, and the strain was re-isolated from infected sponges. A single morphotype, which had burrowed through the collagenous spongin fibres causing severe necrosis, was observed microscopically. Strain NW4327 was capable of degrading commercial preparations of azo-collagen, providing further evidence of its involvement in spongin fibre necrosis, Strain NW4327 disrupted the microbial community associated with R. odorabile and was able to infect and kill healthy sponge tissue. 16S rRNA sequence analysis revealed that strain NW4327 is a novel member of the alpha-proteobacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Microorganisms have been reported to induce settlement and metamorphosis in a wide range of marine invertebrate species. However, the primary cue reported for metamorphosis of coral larvae is calcareous coralline algae (CCA). Herein we report the community structure of developing coral reef biofilms and the potential role they play in triggering the metamorphosis of a scleractinian coral. Two-week-old biofilms induced metamorphosis in less than 10% of larvae, whereas metamorphosis increased significantly on older biofilms, with a maximum of 41% occurring on 8-week-old microbial films. There was a significant influence of depth in 4- and 8-week biofilms, with greater levels of metamorphosis occurring in response to shallow-water communities. Importantly, larvae were found to settle and metamorphose in response to microbial biofilms lacking CCA from both shallow and deep treatments, indicating that microorganisms not associated with CCA may play a significant role in coral metamorphosis. A polyphasic approach consisting of scanning electron microscopy, fluorescence in situ hybridization (FISH), and denaturing gradient gel electrophoresis (DGGE) revealed that coral reef biofilms were comprised of complex bacterial and microalgal communities which were distinct at each depth and time. Principal-component analysis of FISH data showed that the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Cytophaga-Flavobacterium of Bacteroidetes had the largest influence on overall community composition. A low abundance of Archaea was detected in almost all biofilms, providing the first report of Archaea associated with coral reef biofilms. No differences in the relative densities of each subdivision of Proteobacteria were observed between slides that induced larval metamorphosis and those that did not. Comparative cluster analysis of bacterial DGGE patterns also revealed that there were clear age and depth distinctions in biofilm community structure; however, no difference was detected in banding profiles between biofilms which induced larval metamorphosis and those where no metamorphosis occurred. This investigation demonstrates that complex microbial communities can induce coral metamorphosis in the absence of CCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs are the most diverse marine ecosystem and embrace possibly millions of plant, animal and protist species. Mutualistic symbioses are a fundamental feature of coral reefs that have been used to explain their structure, biodiversity and existence. Complex inter-relationships between hosts, habitats and symbionts belie closely coupled nutrient and community dynamics that create the circumstances for something from nothing (or the oasis in a nutrient desert). The flip side of these dynamics is a close dependency between species, which results in a series of non-linear relationships as conditions change. These responses are being highlighted as anthropogenic influences increase across the world's tropical and subtropical coastlines. Caribbean as well as Indo-Pacific coral populations are now in a serious decline in many parts of the world. This has resulted in a significant reorganization of how coral reef ecosystems function. Among the spectra of changes brought about by humans is rapid climate change. Mass coral bleaching - the loss of the dinoflagellate symbionts from reef-building corals - and mortality has affected the world's coral reefs with increasing frequency and intensity since the late 1970s. Mass bleaching events, which often cover thousands of square kilometres of coral reefs, are triggered by small increases (+1-3degreesC) in water temperature. These increases in sea temperature are often seen during warm phase weather conditions (e.g. ENSO) and are increasing in size and magnitude. The loss of living coral cover (e.g. 16% globally in 1998, an exceptionally warm year) is resulting in an as yet unspecified reduction in the abundance of a myriad of other species. Projections from general circulation models (GCM) used to project changes in global temperature indicate that conditions even under the mildest greenhouse gas emission scenarios may exceed the thermal tolerances of most reef-building coral communities. Research must now explore key issues such as the extent to which the thermal tolerances of corals and their symbionts are dynamic if bleaching and disease are linked; how the loss of high densities of reef-building coral will affect other dependent species; and, how the loss of coral populations will affect the millions of people globally who depend on coral reefs for their daily survival.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed ecological, micro-structural and skeletal Sr/Ca study of a 3.42 m thick Goniopora reef profile from an emerged Holocene reef terrace at the northern South China Sea reveals at least nine abrupt massive Goniopora stress and mortality events occurred in winter during the 7.0-7.5 thousand calendar years before present (cal. ka BP) (within the Holocene climatic optimum). Whilst calculated Sr/Ca-SST (sea surface temperature) maxima during this period are comparable to those in the 1990s, Sr/Ca-SST minima are significantly lower, probably due to stronger winter monsoons. Such generally cooler winters, superimposed by further exceptional winter cooling on inter-annual to decadal scales, may have caused stress and mortality of the corals about every 50 years. Sea level rose by similar to 3.42 m during this period, with present sea-level reached at similar to 7.3 ka BP and a sea-level highstand of at least similar to 1.8 m occurred at similar to 7.0 ka. The results show that it took about 20-25 years for a killed Goniopora coral reef to recover. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large storm-relocated Porites coral blocks are widespread on the reef flats of Nansha area, southern South China Sea. Detailed investigations of coral reef ecology, geomorphology and sedimentation on Yongshu Reef indicate that such storm-relocated blocks originated from large Porites lutea corals growing on the spurs within the reef-front living coral zone. Because the coral reef has experienced sustained subsidence and reef development during the Holocene, dead corals were continuously covered by newly growing coral colonies. For this reason, the coral blocks must have been relocated by storms from the living sites and therefore the ages of these storm-relocated corals should approximate the times when the storms occurred. Rapid emplacement of these blocks is also evidenced by the lack of coral overgrowth, encrustation or subtidal alteration. U-series dating of the storm-relocated blocks as well as of in situ reef flat corals suggests that, during the last 1000 years, at least six strong storms occurred in 1064 +/- 30, 1210 +/- 5-1201 +/- 4, 1336 +/- 9, 1443 +/- 9, 1685 +/- 8-1680 +/- 6, 1872 +/- 15 AD, respectively, with an average 160-year cycle (110-240 years). The last storm, which occurred in 1872 15 AD, also led to mortality of the reef flat corals dated at similar to 130 years ago. Thus, the storm had significant impacts on coral reef ecology and morphology. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monitoring of marine reserves has traditionally focused on the task of rejecting the null hypothesis that marine reserves have no impact on the population and community structure of harvested populations. We consider the role of monitoring of marine reserves to gain information needed for management decisions. In particular we use a decision theoretic framework to answer the question: how long should we monitor the recovery of an over-fished stock to determine the fraction of that stock to reserve? This exposes a natural tension between the cost (in terms of time and money) of additional monitoring, and the benefit of more accurately parameterizing a population model for the stock, that in turn leads to a better decision about the optimal size for the reserve with respect to harvesting. We found that the optimal monitoring time frame is rarely more than 5 years. A higher economic discount rate decreased the optimal monitoring time frame, making the expected benefit of more certainty about parameters in the system negligible compared with the expected gain from earlier exploitation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waves breaking on the seaward rim of a coral reef generate a flow of water from the exposed side of the reef to the sheltered side and/or to either channels through the reef-rim or lower sections of the latter. This wave-generated flow is driven by the water surface gradient resulting from the wave set-up created by the breaking waves. This paper reviews previous approaches to modelling wave-generated flows across coral reefs and discusses the influence of reef morphology and roughness upon these flows. Laboratory measurements upon a two-dimensional horizontal reef platform with a steep reef face provide the basis for extending a previous theoretical analysis for wave set-up on a reef in the absence of a flow [Gourlay, M.R., 1996b. Wave set-up on coral reefs. 2. Set-up on reefs with various profiles. Coastal Engineering 28, 1755] to include the interaction between a unidirectional flow and the wave set-up. The laboratory model results are then used to demonstrate that there are two basic reef-top flow regimes-reef-top control and reef-rim control. Using open channel flow theory, analytical relationships are derived for the reef-top current velocity in terms of the offreef wave conditions, the reef-top water depth and the physical characteristics of the reef-top topography. The wave set-up and wave-generated flow relationships are found to predict experimental values with reasonable accuracy in most cases. The analytical relationships are used to investigate wave-generated flows into a boat harbour channel on Heron Reef in the southern Great Barrier Reef. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sustainable management of coastal and coral reef environments requires regular collection of accurate information on recognized ecosystem health indicators. Satellite image data and derived maps of water column and substrate biophysical properties provide an opportunity to develop baseline mapping and monitoring programs for coastal and coral reef ecosystem health indicators. A significant challenge for satellite image data in coastal and coral reef water bodies is the mixture of both clear and turbid waters. A new approach is presented in this paper to enable production of water quality and substrate cover type maps, linked to a field based coastal ecosystem health indicator monitoring program, for use in turbid to clear coastal and coral reef waters. An optimized optical domain method was applied to map selected water quality (Secchi depth, Kd PAR, tripton, CDOM) and substrate cover type (seagrass, algae, sand) parameters. The approach is demonstrated using commercially available Landsat 7 Enhanced Thematic Mapper image data over a coastal embayment exhibiting the range of substrate cover types and water quality conditions commonly found in sub-tropical and tropical coastal environments. Spatially extensive and quantitative maps of selected water quality and substrate cover parameters were produced for the study site. These map products were refined by interactions with management agencies to suit the information requirements of their monitoring and management programs. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conservation of U.S. coral reefs has been sidetracked by the partial implementation of management plans without clearly achievable goals. Historical ecology reveals global patterns of coral reef degradation that provide a framework for reversing reef decline with ecologically meaningful metrics for success. The authors of this Policy Forum urge action now to address multiple threats simultaneously, because the harmful effects of stressors like overfishing, pollution, poor land-use practices, and global warming are interdependent. Prompt implementation of proven, practical solutions would lead to both short- and long-term benefits, including the return of keystone species and the economic benefits they entail.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analysed simulated connectivity patterns for reef fish larvae in the Cairns section of the Great Barrier Reef, and identified 2 key subregions that exhibit regional scale source–sink dynamics. The source and sink were separated latitudinally by a boundary at 16.1°S, with the source subregion lying to the north. Larval transport between the 2 subregions was predominantly unidirectional, from north to south. Only a few local populations, described here as ‘gateway reefs’, were able to transport larvae from the sink subregion to the source subregion and thus maintain the connectedness of the metapopulation. The northern subregion was able to persist without external larval supply, but when conditions were recruitment limited, the southern subregion depended on larval supply from the north to persist. The relative autonomy of the northern subregion, and its importance in sustaining the southern subregion, will influence the effectiveness of conservation efforts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reefs, excellent climatic and environmental archives in tropical oceans, are widely distributed in the South China Sea (SCS), which is the largest enclosed marginal sea of western Pacific, covering over 20° in latitude and different climate conditions. Our recent research in the SCS focuses on coral-based high-resolution climate reconstruction and coral reef ecological responses using geochemical and U-series geochronological tools, which provide an ideal opportunity for understanding of Holocene climate processes and events. Some major research highlights are summarized below: