128 resultados para Automatic model transformation systems
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
Concerns of reduced productivity and land degradation in the Mitchell grasslands of central western Queensland were addressed through a range monitoring program to interpret condition and trend. Botanical and eclaphic parameters were recorded along piosphere and grazing gradients, and across fenceline impact areas, to maximise changes resulting from grazing. The Degradation Gradient Method was used in conjunction with State and Transition Models to develop models of rangeland dynamics and condition. States were found to be ordered along a degradation gradient, indicator species developed according to rainfall trends and transitions determined from field data and available literature. Astrebla spp. abundance declined with declining range condition and increasing grazing pressure, while annual grasses and forbs increased in dominance under poor range condition. Soil erosion increased and litter decreased with decreasing range condition. An approach to quantitatively define states within a variable rainfall environment based upon a time-series ordination analysis is described. The derived model could provide the interpretive framework necessary to integrate on-ground monitoring, remote sensing and geographic information systems to trace states and transitions at the paddock scale. However, further work is needed to determine the full catalogue of states and transitions and to refine the model for application at the paddock scale.
Resumo:
Detailed microstructural evidence for the mechanism of the alpha-beta phase transformation in ytterbium SiAlON ceramics is presented. Grains, which show partial transformation, have been examined using transmission electron microscopy. We suggest that the transformation proceeds as a discernable reaction front and the accompanying lattice mismatch is accommodated be a series of complex dislocations. The stabilizing cation is ejected from the transformed alpha- phase and diffuse along the dislocation to accumulate as isolated pockets in a way similar to that observed in metal systems and termed pipe diffusion. High-resolution electron microscopy reveals the details of each of these features.
Resumo:
Most considerations of knowledge management focus on corporations and, until recently, considered knowledge to be objective, stable, and asocial. In this paper we wish to move the focus away from corporations, and examine knowledge and national innovation systems. We argue that the knowledge systems in which innovation takes place are phenomenologically turbulent, a state not made explicit in the change, innovation and socio-economic studies of knowledge literature, and that this omission poses a serious limitation to the successful analysis of innovation and knowledge systems. To address this lack we suggest that three evolutionary processes must be considered: self-referencing, self-transformation and self-organisation. These processes, acting simultaneously, enable system cohesion, radical innovation and adaptation. More specifically, we argue that in knowledge-based economies the high levels of phenomenological turbulence drives these processes. Finally, we spell out important policy principles that derive from these processes.
Resumo:
Two different types of integrable impurities in a spin ladder system are proposed. The impurities are introduced in such a way that the integrability of the models is not violated. The models are solved exactly with the Bethe ansatz equations as well as the energy eigenvalues obtained. We show for both models that a phase transition between gapped and gapless spin excitations occurs at a critical value of the rung coupling J. In addition, the dependence of the impurities on this phase transition is determined explicitly. In one of the models the spin gap decreases by increasing the impurity strength A. Moreover, for a fixed A, a reduction in the spin gap by increasing the impurity concentration is also observed.
Resumo:
An increasing number of studies shows that the glycogen-accumulating organisms (GAOs) can survive and may indeed proliferate under the alternating anaerobic/aerobic conditions found in EBPR systems, thus forming a strong competitor of the polyphosphate-accumulating organisms (PAOs). Understanding their behaviors in a mixed PAO and GAO culture under various operational conditions is essential for developing operating strategies that disadvantage the growth of this group of unwanted organisms. A model-based data analysis method is developed in this paper for the study of the anaerobic PAO and GAO activities in a mixed PAO and GAO culture. The method primarily makes use of the hydrogen ion production rate and the carbon dioxide transfer rate resulting from the acetate uptake processes by PAOs and GAOs, measured with a recently developed titration and off-gas analysis (TOGA) sensor. The method is demonstrated using the data from a laboratory-scale sequencing batch reactor (SBR) operated under alternating anaerobic and aerobic conditions. The data analysis using the proposed method strongly indicates a coexistence of PAOs and GAOs in the system, which was independently confirmed by fluorescent in situ hybridization (FISH) measurement. The model-based analysis also allowed the identification of the respective acetate uptake rates by PAOs and GAOs, along with a number of kinetic and stoichiometric parameters involved in the PAO and GAO models. The excellent fit between the model predictions and the experimental data not involved in parameter identification shows that the parameter values found are reliable and accurate. It also demonstrates that the current anaerobic PAO and GAO models are able to accurately characterize the PAO/GAO mixed culture obtained in this study. This is of major importance as no pure culture of either PAOs or GAOs has been reported to date, and hence the current PAO and GAO models were developed for the interpretation of experimental results of mixed cultures. The proposed method is readily applicable for detailed investigations of the competition between PAOs and GAOs in enriched cultures. However, the fermentation of organic substrates carried out by ordinary heterotrophs needs to be accounted for when the method is applied to the study of PAO and GAO competition in full-scale sludges. (C) 2003 Wiley Periodicals, Inc.
Resumo:
This paper is concerned with methods for refinement of specifications written using a combination of Object-Z and CSP. Such a combination has proved to be a suitable vehicle for specifying complex systems which involve state and behaviour, and several proposals exist for integrating these two languages. The basis of the integration in this paper is a semantics of Object-Z classes identical to CSP processes. This allows classes specified in Object-Z to be combined using CSP operators. It has been shown that this semantic model allows state-based refinement relations to be used on the Object-Z components in an integrated Object-Z/CSP specification. However, the current refinement methodology does not allow the structure of a specification to be changed in a refinement, whereas a full methodology would, for example, allow concurrency to be introduced during the development life-cycle. In this paper, we tackle these concerns and discuss refinements of specifications written using Object-Z and CSP where we change the structure of the specification when performing the refinement. In particular, we develop a set of structural simulation rules which allow single components to be refined to more complex specifications involving CSP operators. The soundness of these rules is verified against the common semantic model and they are illustrated via a number of examples.
Resumo:
The use of a fitted parameter watershed model to address water quantity and quality management issues requires that it be calibrated under a wide range of hydrologic conditions. However, rarely does model calibration result in a unique parameter set. Parameter nonuniqueness can lead to predictive nonuniqueness. The extent of model predictive uncertainty should be investigated if management decisions are to be based on model projections. Using models built for four neighboring watersheds in the Neuse River Basin of North Carolina, the application of the automated parameter optimization software PEST in conjunction with the Hydrologic Simulation Program Fortran (HSPF) is demonstrated. Parameter nonuniqueness is illustrated, and a method is presented for calculating many different sets of parameters, all of which acceptably calibrate a watershed model. A regularization methodology is discussed in which models for similar watersheds can be calibrated simultaneously. Using this method, parameter differences between watershed models can be minimized while maintaining fit between model outputs and field observations. In recognition of the fact that parameter nonuniqueness and predictive uncertainty are inherent to the modeling process, PEST's nonlinear predictive analysis functionality is then used to explore the extent of model predictive uncertainty.