232 resultados para 770402 Land and water management


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enhanced biodegradation of organic xenobiotic compounds in the rhizosphere is frequently recorded although the specific mechanisms are poorly understood. We have shown that the mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) is enhanced in soil collected from the rhizosphere of Trifolium pratense[e.g. maximum mineralization rate = 7.9 days(-1) and time at maximum rate (t(1)) = 16.7 days for 12-day-old T. pratense soil in comparison with 4.7 days(-1) and 25.4 days, respectively, for non-planted controls). The purpose of this study was to gain a better understanding of the plant-microbe interactions involved in rhizosphere-enhanced biodegradation by narrowing down the identity of the T. pratense rhizodeposit responsible for stimulating the microbial mineralization of 2,4-D. Specifically, we investigated the distribution of the stimulatory component(s) among rhizodeposit fractions (exudates or root debris) and the influence of soil properties and plant species on its production. Production of the stimulatory rhizodeposit was dependent on soil pH (e.g. t(1) for roots grown at pH 6.5 was significantly lower than for those grown at pH 4.4) but independent of soil inorganic N concentration. Most strikingly, the stimulatory rhizodeposit was only produced by T. pratense grown in non-sterile soil and was present in both exudates and root debris. Comparison of the effect of root debris from plant species (three each) from the classes monocotyledon, dicotyledon (non-legume) and dicotyledon (legume) revealed that legumes had by far the greatest positive impact on 2,4-D mineralization kinetics. We discuss the significance of these findings with respect to legume-rhizobia interactions in the rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International donors and state bureaucrats in the developing world have promoted decentralization reform as the primary means to achieve equitable, efficient and sustainable natural resource management. Relatively few studies, however, consider the power interests at stake. Why do state agencies decentralize power, what political patterns unfold, and how do outcomes affect the responses of resource users? This paper explores decentralization reform by investigating the political processes behind the Philippine state's decisions to transfer authority over national parks management to local government units. Drawing on a case of devolved management at Puerto Princesa Subterranean River National Park, Palawan Island, we examine how political motives situated at different institutional scales affect the broader process of decentralization, the structure of management institutions, and overall livelihood security. We demonstrate how power struggles between the Philippine state and City Government of Palawan over the right to manage the national park have impacted the livelihood support offered by community-based conservation. We conclude that decentralization may offer empowering resu

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a review of modelling and control of biological nutrient removal (BNR)-activated sludge processes for wastewater treatment using distributed parameter models described by partial differential equations (PDE). Numerical methods for solution to the BNR-activated sludge process dynamics are reviewed and these include method of lines, global orthogonal collocation and orthogonal collocation on finite elements. Fundamental techniques and conceptual advances of the distributed parameter approach to the dynamics and control of activated sludge processes are briefly described. A critical analysis on the advantages of the distributed parameter approach over the conventional modelling strategy in this paper shows that the activated sludge process is more adequately described by the former and the method is recommended for application to the wastewater industry (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relevance of endocrine-disrupting compounds as potential contaminants of drinking water is reviewed, particularly in the reuse of wastewater. Growing populations and increasing intensification of land and water use for industry and agriculture have increased the need to reclaim wastewater for reuse, including to supplement the drinking water supply. The variety of anthropogenic chemicals that have been identified as potential endocrine disruptors in the environment and the problems arising from their use as human and livestock pharmaceuticals, as agricultural chemicals and in industry are discussed. The potentially adverse impact of these chemicals on human health and the ecology of the natural environment are reviewed. Data for the removal of estrogenic compounds from wastewater treatment are presented, together with the comparative potencies of estrogenic compounds. The relative exposure to estrogens of women on oral contraceptives, hormone replacement therapy, and through food consumption is estimated. A brief overview of some methods available or under development for the assessment of estrogenic activity in environmental samples is provided. The review concludes with a discussion of the directions for further investigation, which include human epidemiology, methodology development, and wastewater monitoring. (C) 2006 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil absorption systems (SAS) are used commonly to treat and disperse septic tank effluent (STE). SAS can hydraulically fail as a result of the low permeable biomat zone that develops on the infiltrative surface. The objectives of this experiment were to compare the hydraulic properties of biomats grown in soils of different textures, to investigate the long-term acceptance rates (LTAR) from prolonged application of STE, and to assess if soils were of major importance in determining LTAR. The STE was applied to repacked sand, Oxisol and Vertisol soil columns over a period of 16 months, at equivalent hydraulic loading rates of 50, 35 and 8 L/m(2)/d, respectively Infiltration rates, soil matric potentials, and biomat hydraulic properties were measured either directly from the soil columns or calculated using established soil physics theory. Biomats 1 to 2 cm thick developed in all soils columns with hydraulic resistances of 27 to 39 d. These biomats reduced a 4 order of magnitude variation in saturated hydraulic conductivity (K.) between the soils to a one order of magnitude variation in LTAR. A relationship between biomat resistance and organic loading rate was observed in all soils. Saturated hydraulic conductivity influenced the rate and extent of biomat development. However, once the biomat was established, the LTAR was governed by the resistance of the biomat and the sub-biomat soil unsaturated flow regime induced by the biomat. Results show that whilst initial soil K. is likely to be important in the establishment of the biomat zone in a trench, LTAR is determined by the biomat resistance and the unsaturated soil hydraulic conductivity, not the K, of a soil. The results call into question the commonly used approach of basing the LTAR, and ultimately trench length in SAS, on the initial K, of soils. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador: