116 resultados para two-dimensional correlation spectroscopy
Resumo:
Spaceborne/airborne synthetic aperture radar (SAR) systems provide high resolution two-dimensional terrain imagery. The paper proposes a technique for combining multiple SAR images, acquired on flight paths slightly separated in the elevation direction, to generate high resolution three-dimensional imagery. The technique could be viewed as an extension to interferometric SAR (InSAR) in that it generates topographic imagery with an additional dimension of resolution. The 3-D multi-pass SAR imaging system is typically characterised by a relatively short ambiguity length in the elevation direction. To minimise the associated ambiguities we exploit the relative phase information within the set of images to track the terrain landscape. The SAR images are then coherently combined, via a nonuniform DFT, over a narrow (in elevation) volume centred on the 'dominant' terrain ground plane. The paper includes a detailed description of the technique, background theory, including achievable resolution, and the results of an experimental study.
Resumo:
This paper presents results on the simulation of the solid state sintering of copper wires using Monte Carlo techniques based on elements of lattice theory and cellular automata. The initial structure is superimposed onto a triangular, two-dimensional lattice, where each lattice site corresponds to either an atom or vacancy. The number of vacancies varies with the simulation temperature, while a cluster of vacancies is a pore. To simulate sintering, lattice sites are picked at random and reoriented in terms of an atomistic model governing mass transport. The probability that an atom has sufficient energy to jump to a vacant lattice site is related to the jump frequency, and hence the diffusion coefficient, while the probability that an atomic jump will be accepted is related to the change in energy of the system as a result of the jump, as determined by the change in the number of nearest neighbours. The jump frequency is also used to relate model time, measured in Monte Carlo Steps, to the actual sintering time. The model incorporates bulk, grain boundary and surface diffusion terms and includes vacancy annihilation on the grain boundaries. The predictions of the model were found to be consistent with experimental data, both in terms of the microstructural evolution and in terms of the sintering time. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
This paper employs a two-dimensional variable density flow and transport model to investigate the transport of a dense contaminant plume in an unconfined coastal aquifer. Experimental results are also presented to show the contaminant plume in a freshwater-seawater flow system. Both the numerical and experimental results suggest that the neglect of the seawater interface does not noticeably affect the horizontal migration rate of the plume before it reaches the interface. However, the contaminant will travel further seaward and part of the solute mass will exit under the sea if the higher seawater density is not included. If the seawater density is included, the contaminant will travel upwards towards the beach along the freshwater-saltwater interface as shown experimentally. Neglect of seawater density, therefore, will result in an underestimate of solute mass rate exiting around the coastline. (C) 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
Previous studies on tidal water table dynamics in unconfined coastal aquifers have focused on the inland propagation of oceanic tides in the cross-shore direction based on the assumption of a straight coastline. Here, two-dimensional analytical solutions are derived to study the effects of rhythmic coastlines on tidal water table fluctuations. The computational results demonstrate that the alongshore variations of the coastline can affect the water table behavior significantly, especially in areas near the centers of the headland and embayment. With the coastline shape effects ignored, traditional analytical solutions may lead to large errors in predicting coastal water table fluctuations or in estimating the aquifer's properties based on these signals. The conditions under which the coastline shape needs to be considered are derived from the new analytical solution.
Resumo:
A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption systems. (C) 2002 Elsevier Science (USA).
Resumo:
alpha-Conotoxin AuIB and a disulfide bond variant of AuIB have been synthesized to determine the role of disulfide bond connectivity on structure and activity. Both of these peptides contain the 15 amino acid sequence GCCSYPPCFATNPDC, with the globular (native) isomer having the disulfide connectivity Cys(2-8 and 3-15) and the ribbon isomer having the disulfide connectivity Cys(2-15 and 3-8). The solution structures of the peptides were determined by NAIR spectroscopy, and their ability to block the nicotinic acetylcholine receptors on dissociated neurons of the rat parasympathetic ganglia was examined. The ribbon disulfide isomer, although having a less well defined structure, is surprisingly found to have approximately 10 times greater potency than the native peptide. To our knowledge this is the first demonstration of a non-native disulfide bond isomer of a conotoxin exhibiting greater biological activity than the native isomer.
Resumo:
The role that Epstein-Barr virus plays in nasopharyngeal carcinoma and Burkitt's lymphoma has been under intense study for many years. With only a limited set of viral genes being expressed in these tumours it has been difficult to understand how the virus could cause/aid in the generation of the tumours. In 1997 a paper was published by Fries et al. [Fries et al. (1997) Identification of a novel protein encoded by the BamHI A region of the Epstein-Barr virus. J Virol 71: 2765-2771.] in which a rabbit serum was generated and used to identify protein products (RK-BARF0) encoded from the BamH1 A region of EBV. In this paper we have isolated these proteins from two-dimensional gels and identified them, using mass spectrometry, as components of HLA DR.
Resumo:
Predictions of flow patterns in a 600-mm scale model SAG mill made using four classes of discrete element method (DEM) models are compared to experimental photographs. The accuracy of the various models is assessed using quantitative data on shoulder, toe and vortex center positions taken from ensembles of both experimental and simulation results. These detailed comparisons reveal the strengths and weaknesses of the various models for simulating mills and allow the effect of different modelling assumptions to be quantitatively evaluated. In particular, very close agreement is demonstrated between the full 3D model (including the end wall effects) and the experiments. It is also demonstrated that the traditional two-dimensional circular particle DEM model under-predicts the shoulder, toe and vortex center positions and the power draw by around 10 degrees. The effect of particle shape and the dimensionality of the model are also assessed, with particle shape predominantly affecting the shoulder position while the dimensionality of the model affects mainly the toe position. Crown Copyright (C) 2003 Published by Elsevier Science B.V. All rights reserved.
Resumo:
[1] In this paper a detailed design, development and performances of a 5 GHz microstrip Yagi antenna, which uses a two-dimensional (2-D) electromagnetic band gap (EBG) structure in the ground plane, are presented. The results indicate that the use of the EBG structure improves the radiation pattern of the antenna. The cross polarization is suppressed by properly choosing the period and dimensions of EBGs. Also, the broadside gain is improved in comparison with the analogous antenna without the EBGs.
Resumo:
A digalactosyl ononitol was isolated from seeds of adzuki bean (Vigna angularis [Willd.] Ohwi et Ohasi). Analysis of hydrolysis products and NMR spectroscopy established its structure as O-alpha-D-galactopyranosyl-(1-->6)-O-alpha-D-galactopyranosyl-(1-->3)-O-methyl- D-myo-inositol. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a technique for visualising hierarchical and symmetric, multimodal fitness functions that have been investigated in the evolutionary computation literature. The focus of this technique is on landscapes in moderate-dimensional, binary spaces (i.e., fitness functions defined over {0, 1}(n), for n less than or equal to 16). The visualisation approach involves an unfolding of the hyperspace into a two-dimensional graph, whose layout represents the topology of the space using a recursive relationship, and whose shading defines the shape of the cost surface defined on the space. Using this technique we present case-study explorations of three fitness functions: royal road, hierarchical-if-and-only-if (H-IFF), and hierarchically decomposable functions (HDF). The visualisation approach provides an insight into the properties of these functions, particularly with respect to the size and shape of the basins of attraction around each of the local optima.