124 resultados para step-stress fatigue
Resumo:
Aims: The frequency of the Taq I A alleles (A1 and A2) of the D2 dopamine receptor (DRD2) gene was examined in Caucasian post-traumatic stress disorder (PTSD) patients and controls. Results: In 91 PTSD patients, the frequency of the A1 allele was higher (P = 6.12 x 10(-3)) than in the 51 controls. In the 38 PTSD harmful drinkers (greater than or equal to60 g alcohol/day), A1 allelic frequency was higher (P = 3.91 x 10(-2)) than in the 53 non-harmful drinkers (
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
The Load-Unload Response Ratio (LURR) method is an intermediate-term earthquake prediction approach that has shown considerable promise. It involves calculating the ratio of a specified energy release measure during loading and unloading where loading and unloading periods are determined from the earth tide induced perturbations in the Coulomb Failure Stress on optimally oriented faults. In the lead-up to large earthquakes, high LURR values are frequently observed a few months or years prior to the event. These signals may have a similar origin to the observed accelerating seismic moment release (AMR) prior to many large earthquakes or may be due to critical sensitivity of the crust when a large earthquake is imminent. As a first step towards studying the underlying physical mechanism for the LURR observations, numerical studies are conducted using the particle based lattice solid model (LSM) to determine whether LURR observations can be reproduced. The model is initialized as a heterogeneous 2-D block made up of random-sized particles bonded by elastic-brittle links. The system is subjected to uniaxial compression from rigid driving plates on the upper and lower edges of the model. Experiments are conducted using both strain and stress control to load the plates. A sinusoidal stress perturbation is added to the gradual compressional loading to simulate loading and unloading cycles and LURR is calculated. The results reproduce signals similar to those observed in earthquake prediction practice with a high LURR value followed by a sudden drop prior to macroscopic failure of the sample. The results suggest that LURR provides a good predictor for catastrophic failure in elastic-brittle systems and motivate further research to study the underlying physical mechanisms and statistical properties of high LURR values. The results provide encouragement for earthquake prediction research and the use of advanced simulation models to probe the physics of earthquakes.
Resumo:
Coral bleaching events have become more frequent and widespread, largely due to elevated sea surface temperatures. Global climate change could lead to increased variability of sea surface temperatures, through influences on climate systems, e.g. El Nino Southern Oscillation (ENSO). Field observations in 1999, following a strong ENSO, revealed that corals bleached in winter after unusually cold weather. To explore the basis for these observations, the photosynthetic responses of the coral species Montipora digitata Studer were investigated in a series of temperature and light experiments. Small replicate coral colonies were exposed to ecologically relevant lower temperatures for varying durations and under light regimes that ranged from darkness to full sunlight. Photosynthetic efficiency was analyzed using a pulse amplitude modulated (PAM) fluorometer (F-0, F-m, F-v/F-m), and chlorophyll a (chl a) content and symbiotic dinoflagellate density were analyzed with spectrophotometry and microscopy, respectively. Cold temperature stress had a negative impact on M digitata colonies indicated by decreased photosynthetic efficiency (F-v/F-m), loss of symbiotic dinoflagellates and changes in photosynthetic pigment concentrations. Corals in higher light regimes were more susceptible to cold temperature stress, Moderate cold stress resulted in photoacclimatory responses, but severe cold stress resulted in photodamage, bleaching and increased mortality. Responses to cold temperature stress of M digitata appeared similar to that observed in corals exposed to warmer than normal temperatures, suggesting a common mechanism. The results of this study suggest that corals and coral reefs may also be impacted by exposure to cold as well as warm temperature extremes as climate change occurs.
Resumo:
Objective: This study compares myoelectric manifestations of fatigue of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 10 chronic neck pain subjects and 10 normal matched controls. Methods: Surface electromyography (sEMG) signals were recorded from the sternal bead of SCM and AS muscles bilaterally during submaximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The mean frequency, average rectified value and conduction velocity of the sEMG signal were calculated to quantify myoelectric manifestations of muscle fatigue. Results: For both the SCM and AS muscles, the Mann-Whitney U test indicated that the initial value and slope of the mean frequency in neck pain patients were greater than in healthy subjects (P < 0.05). This was significant both at 25 and 50% of MVC. Conclusions: These results suggest: (a) a predominance of type-II fibres in the neck pain patients and/or (b) greater fatigability of the superficial cervical flexors in neck pain patients. These results are in agreement with previous muscle biopsy studies in subjects with neck pain, which identified transformation of slow-twitch type-I fibres to fast-twitch type-IIB fibres, as well as the clinical observation of reduced endurance in the cervical flexors in neck pain patients. (C) 2003 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Blast fragmentation can have a significant impact on the profitability of a mine. An optimum run of mine (ROM) size distribution is required to maximise the performance of downstream processes. If this fragmentation size distribution can be modelled and controlled, the operation will have made a significant advancement towards improving its performance. Blast fragmentation modelling is an important step in Mine to Mill™ optimisation. It allows the estimation of blast fragmentation distributions for a number of different rock mass, blast geometry, and explosive parameters. These distributions can then be modelled in downstream mining and milling processes to determine the optimum blast design. When a blast hole is detonated rock breakage occurs in two different stress regions - compressive and tensile. In the-first region, compressive stress waves form a 'crushed zone' directly adjacent to the blast hole. The second region, termed the 'cracked zone', occurs outside the crush one. The widely used Kuz-Ram model does not recognise these two blast regions. In the Kuz-Ram model the mean fragment size from the blast is approximated and is then used to estimate the remaining size distribution. Experience has shown that this model predicts the coarse end reasonably accurately, but it can significantly underestimate the amount of fines generated. As part of the Australian Mineral Industries Research Association (AMIRA) P483A Mine to Mill™ project, the Two-Component Model (TCM) and Crush Zone Model (CZM), developed by the Julius Kruttschnitt Mineral Research Centre (JKMRC), were compared and evaluated to measured ROM fragmentation distributions. An important criteria for this comparison was the variation of model results from measured ROM in the-fine to intermediate section (1-100 mm) of the fragmentation curve. This region of the distribution is important for Mine to Mill™ optimisation. The comparison of modelled and Split ROM fragmentation distributions has been conducted in harder ores (UCS greater than 80 MPa). Further work involves modelling softer ores. The comparisons will be continued with future site surveys to increase confidence in the comparison of the CZM and TCM to Split results. Stochastic fragmentation modelling will then be conducted to take into account variation of input parameters. A window of possible fragmentation distributions can be compared to those obtained by Split . Following this work, an improved fragmentation model will be developed in response to these findings.
Resumo:
Direct numerical simulation has been carried out for turbulent flow set up by a rotating cylinder with two backward-facing steps axisymmetrically mounted in the circumferential direction. This flow geometry creates a qualitatively similar flow pattern as observed near, a sudden, pipe expansion or a plane backward-facing step, characterized by flow separation and reattachment. A region of intense turbulence intensity and high wall-shear-stress fluctuations is formed in,the recirculating I region downstream of the step, where high mass-transfer capacity was also experimentally observed. Since, corrosion is frequently mass-transfer., controlled, our findings, put forward this apparatus as useful tool for future corrosion research.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Perceived stress as a predictor of the self-reported new diagnosis of symptomatic CHD in older women
Resumo:
This article describes one aspect of a prospective cohort study of 10,432 women aged between 70 and 75 years. After a 3-year period, 503 women self-reported a new diagnosis by a doctor of angina or myocardial infarction (symptomatic coronary heart disease [CHD]). Time one psychosocial variables (Duke Social Support Index, time pressure, Perceived Stress Scale, Mental Health Index, having a partner, educational attainment, and location of residence) were analyzed using univariate binary logistic regression for their ability to predict subsequent symptomatic CHD. Of these variables, the Duke Social Support Index, Perceived Stress Scale and the Mental Health Index were found to be significant predictors of symptomatic CHID diagnosis. Only the Perceived Stress Scale, however, proved to be a significant independent predictor. After controlling for time one nonpsychosocial variables, as well as the frequency of family doctor visits, perceived stress remained a significant predictor of the new diagnosis of symptomatic CHD in this cohort of older women over a 3-year period.
Resumo:
Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated ( Atm)-deficient animals have elevated levels of oxidized macromolecules and some neuropathology. We report here that in vitro survival of cerebellar Purkinje cells from both Atm knock-out and Atm knock-in mice was significantly reduced compared with their wild-type littermates. Although most of the Purkinje neurons from wild-type mice exhibited extensive dendritic elongation and branching under these conditions, most neurons from Atm-deficient mice had dramatically reduced dendritic branching. An antioxidant ( isoindoline nitroxide) prevented Purkinje cell death in Atm-deficient mice and enhanced dendritogenesis to wild-type levels. Furthermore, administration of the antioxidant throughout pregnancy had a small enhancing effect on Purkinje neuron survival in Atm gene-disrupted animals and protected against oxidative stress in older animals. These data provide strong evidence for a defect in the cerebellum of Atm-deficient mice and suggest that oxidative stress contributes to this phenotype.
Resumo:
Objectives: To examine the changes in torque output resulting from fatigue, as well as changes in electromyographic measures of trunk muscles during isometric axial rotation and to compare these changes between directions of axial rotation. Design: Subjects performed fatiguing right and left isometric axial rotation of the trunk at 80% of maximum voluntary contraction while standing upright. Setting: A rehabilitation center. Participants: Twenty-three men with no history of back pain. Interventions: Not applicable. Main Outcome Measures: Surface electromyographic Signals were recorded from 6 trunk muscles bilaterally. The primary torque in the transverse plane and the coupling torques in sagittal and coronal planes were also measured. Results: During the fatiguing axial rotation contraction, coupling torques of both sagittal and coronal planes were slightly decreased and no difference was found between directions of axial rotation. Decreasing median frequency and an increase in electromyographic amplitude were also found in trunk muscles with different degrees of changes in individual muscles. There were significant differences (P
Resumo:
The influence of complex plaque morphology on the extent of demand-induced ischemia in unselected patients is not well defined. We sought to investigate the functional significance of lesion morphology in patients who underwent coronary angiography and dobutamine stress echocardiography (DSE).,Angiography and DSE were performed within a 6-month period (mean 1 +/- 1 month) in 196 patients. Angiographic assessments involved quantification of stenosis severity, assessment of the extent of jeopardized myocardium, and categorization of plaque morphology according to the Ambrose classification. DSE was interpreted by separate investigators with respect to wall motion score index (WMSI) and number of coronary territories involved. A general linear model was constructed to assess,the independent contribution of patient characteristics and angiographic and DSE results with respect to extent of ischemic myocardium. Complex lesion morphology was seen in 62 patients (32%). Patients with complex lesions were more likely to have had prior myocardial infarction (p < 0.001) and be current smokers (p = 0.03). During angiography, they exhibited a trend toward a greater number of diseased vessels, had a greater coronary jeopardy score (p < 0.001) and more frequent collateral flow (p = 0.03). During echocardiography, patients had a higher stress WMSI (p < 0.001) and were more likely to show ischemia in all 3 arterial territories (p < 0.01). On multivariate regression, the coronary artery jeopardy score and the presence of complex plaque morphology were independent predictors of the extent of ischemic myocardium (R 2 = 34%, p < 0.001). Thus, patients with complex plaque morphology are older, more likely to smoke, and more likely to have had prior myocardial. infarction. They exhibit more extensive disease with higher coronary jeopardy scores and a higher resting and peak stress WMSI. Despite these differences, complex plaque morphology remains an independent predictor of the extent of ischemia during stress. (C) 2003 by Excerpta Medica, Inc.