109 resultados para spatial mechanisms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consonant imprecision has been reported to be a common feature of the dysarthric speech disturbances exhibited by individuals who have sustained a traumatic brain injury (TBI). Inaccurate tongue placements against the hard palate during consonant articulation may be one factor underlying the imprecision. To investigate this hypothesis, electropalatography (EPG) was used to assess the spatial characteristics of the tongue-to-palate contacts exhibited by three males (aged 23-29 years) with dysarthria following severe TBI. Five nonneurologically impaired adults served as control subjects. Twelve single-syllable words of CV or CVC construction (where initial C = /t, d, S, z, k, g/, V=/i, a/) were read aloud three times by each subject while wearing an EPG palate. Spatial characteristics were analyzed in terms of the location, pattern, and amount of tongue-to-palate contact at the frame of maximum contact during production of each consonant. The results revealed that for the majority of consonants, the patterns and locations of contacts exhibited by the TBI subjects were consistent with the contacts generated by the group of control subjects. One notable exception was one subject's production of the alveolar fricatives in which complete closure across the palate was demonstrated, rather than the characteristic groove configuration. Major discrepancies were also noted in relation to the amount of tongue-to-palate contact exhibited, with two TBI subjects consistently demonstrating increased contacts compared to the control subjects. The implications of these findings for the development of treatment programs for dysarthric speech disorders subsequent to TBI are highlighted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background The reduction of exercise capacity because of fatigue and dyspnea in patients with heart failure can be improved with exercise training. We sought to examine the mechanisms of exercise training, as an adjunctive treatment strategy for patients with heart failure. Methods a reviewed the published data on the possible mechanisms of effect of exercise training in heart failure. Results Symptoms of heart failure may be explained on the basis of abnormal skeletal muscle perfusion and structure and endothelial function. Exercise training has been shown to engender changes in muscle structure and biochemistry and vascular function, although effects on cardiac function have not been detected uniformly and may require longer training periods. Conclusions A suitable, long-term program of exercise training may reverse unfavorable interactions among the heart, vessels, and skeletal muscles. These improvements may be preserved with an ongoing maintenance program.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The detection of preclinical heart disease is a new direction in diabetes care. This comment describes the study by Vinereanu and co-workers in this issue of Clinical Science in which tissue Doppler echocardiography has been employed to demonstrate subtle systolic and diastolic dysfunction in Type 11 diabetic patients who had normal global systolic function and were free of coronary artery disease. The aetiology of early ventricular dysfunction in diabetes relates to complex intramyocardial and extramyocardial mechanisms. The initiating event may be due to insulin resistance, and involves abnormal myocardial substrate utilization and uncoupling of mitochondrial oxidative phosphorylation. Dysglycaemia plays an important role via the effects of oxidative stress, protein kinase C activation and advanced glycosylation end-products on inflammatory signalling, collagen metabolism and fibrosis. Extramyocardial mechanisms involve peripheral endothelial dysfunction, arterial stiffening and autonomic neuropathy. The clinical significance of the ventricular abnormalities described is unknown. Confirmation of their prognostic importance for cardiac disease in diabetes would justify routine screening for presymptomatic ventricular dysfunction, as well as clinical trials of novel agents for correcting causal mechanisms. These considerations could also have implications for patients with obesity and the metabolic syndrome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arguably the most complex conical functions are seated in human cognition, the how and why of which have been debated for centuries by theologians, philosophers and scientists alike. In his best-selling book, An Astonishing Hypothesis: A Scientific Search for the Soul, Francis Crick refined the view that these qualities are determined solely by cortical cells and circuitry. Put simply, cognition is nothing more, or less, than a biological function. Accepting this to be the case, it should be possible to identify the mechanisms that subserve cognitive processing. Since the pioneering studies of Lorent de No and Hebb, and the more recent studies of Fuster, Miller and Goldman-Rakic, to mention but a few, much attention has been focused on the role of persistent neural activity in cognitive processes. Application of modern technologies and modelling techniques has led to new hypotheses about the mechanisms of persistent activity. Here I focus on how regional variations in the pyramidal cell phenotype may determine the complexity of cortical circuitry and, in turn, influence neural activity. Data obtained from thousands of individually injected pyramidal cells in sensory, motor, association and executive cortex reveal marked differences in the numbers of putative excitatory inputs received by these cells. Pyramidal cells in prefrontal cortex have, on average, up to 23 times more dendritic spines than those in the primary visual area. I propose that without these specializations in the structure of pyramidal cells, and the circuits they form, human cognitive processing would not have evolved to its present state. I also present data from both New World and Old World monkeys that show varying degrees of complexity in the pyramidal cell phenotype in their prefrontal cortices, suggesting that cortical circuitry and, thus, cognitive styles are evolving independently in different species.