138 resultados para single working
Resumo:
This study investigated the residues responsible for the reduced picrotoxin sensitivity of the alpha beta heteromeric glycine receptor relative to the alpha homomeric receptor. By analogy with structurally related receptors, the beta subunit M2 domain residues P278 and F282 were considered the most likely candidates for mediating this effect. These residues align with G254 and T258 of the alpha subunit. The T258A, T258C and T258F mutations dramatically reduced the picrotoxin sensitivity of the alpha homomeric receptor. Furthermore, the converse F282T mutation in the beta subunit increased the picrotoxin sensitivity of the alpha beta heteromeric receptor. The P278G mutation in the beta subunit did not affect the picrotoxin sensitivity of the alpha beta heteromer. Thus, a ring of five threonines at the M2 domain depth corresponding to alpha subunit T258 is specifically required for picrotoxin sensitivity. Mutations to alpha subunit T258 also profoundly influenced the apparent glycine affinity. A substituted cysteine accessibility analysis revealed that the T258C sidechain increases its pore exposure in the channel open state. This provides further evidence for an allosteric mechanism of picrotoxin inhibition, but renders it unlikely that picrotoxin las an allosterically acting 'competitive' antagonist) binds to this residue.
Resumo:
Single cell genetic analysis is generally performed using PCR and FISH. Until recently, FISH has been the method of choice. FISH however is expensive, has significant misdiagnosis rates, can result in interpretation difficulties and is labour intensive making it unsuitable for high throughput processing. Recently fluorescent PCR reliability has increased to levels at or surpassing FISH whilst maintaining low cost. However, PCR accuracy has been a concern due to allelic dropout. Multiplex PCR can now increase accuracy by using multiple markers for each chromosome to firstly provide diagnosis if markers fail and,or secondly confirm diagnosis. We compare a variety of diagnostic methods and demonstrate for the first time a multiplex PCR system providing simultaneous diagnosis and confirmation of the major aneuploidy chromosomes (21, 18, 13) and sex as well as DNA fingerprint in single cells. We also discuss the implications of using PCR for aneuploidy screening in preimplantation genetic diagnosis. (C) 2001 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Purpose. To demonstrate that the combination of impression cytology and single cell DNA fingerprinting represents a powerful tool that is suitable for detecting transplanted cells after corneal limbal allografting. Methods, Fifty single cells were obtained by corneal impression cytology from 12 patients undergoing cataract surgery. Individual cells were isolated from samples by micromanipulation. Polymerase chain reaction and short tandem repeat profiling was used to obtain forensic standard DNA fingerprints from single cells. Blood samples taken at the time of impression cytology provided control fingerprints. Results, informative DNA fingerprints were obtained from all corneal samples and 66% (33 of 50 cells) of isolated single cells, Of all fingerprints obtained, most (91%, 30 of 33 fingerprints) corneal fingerprints matched corresponding blond sample fingerprints. At least one corneal fingerprint matched the corresponding blood sample fingerprint in 83% (10 of 12 patients) of the patients in the study, Conclusions. This extremely specific single cell DNA fingerprinting system permits accurate identification of individual corneal epithelial cells, allowing very reliable determination of their origin, which will enable host and donor cells to be distinguished from each other after keratolimbal allografting procedures. even if the host and donor are the same sex or siblings. These DNA fingerprinting methods allow assessment of quality and quantity of donor cell survival, as well as survival time. The extreme sensitivity and accuracy of the technique means that should contamination occur, it would be identified, thus ensuring meaningful results.
Resumo:
Genetic and environmental sources of covariation among the P3(00) and online performance elicited in a delayed-response working memory task, and psychometric IQ assessed by the multidimensional aptitude battery, were examined in an adolescent twin sample. An association between frontal P3 latency and task performance (phenotypic r = -0.33; genotypic r = -0.49) was indicated, with genes (i.e. twin status) accounting for a large part of the covariation ( > 70%). In contrast, genes influencing P3 amplitude mediated only a small part (2%) of the total genetic variation in task performance. While task performance mediated 15% of the total genetic variation in IQ (phenotypic r = 0.22; genotypic r = 0.39) there was no association between P3 latency and IQ or P3 amplitude with IQ. The findings provide some insight into the inter-relationships among psychophysiological, performance and psychometric measures of cognitive ability, and provide support for a levels-of-processing genetic model of cognition where genes act on specific sub-components of cognitive processes.
Resumo:
Motivated by recent experiments on electric transport through single molecules and quantum dots, we investigate a model for transport that allows for significant coupling between the electrons and a boson mode isolated on the molecule or dot. We focus our attention on the temperature-dependent properties of the transport. In the Holstein picture for polaronic transport in molecular crystals the temperature dependence of the conductivity exhibits a crossover from coherent (band) to incoherent (hopping) transport. Here, the temperature dependence of the differential conductance on resonance does not show such a crossover, but is mostly determined by the lifetime of the resonant level on the molecule or dot.
Resumo:
The first direct voltammetric response from a molybdenum enzyme under non-turnover conditions is reported. Cyclic voltammetry of dimethylsulfoxide reductase from Rhodobacter capsulatus reveals a reversible Mo-VI/V response at + 161 mV followed by a reversible Mo-V/IV response at -102 mV versus NHE at pH 8. The higher potential couple exhibits a pH dependence consistent with protonation upon reduction to the Mo-V state and we have determined the pK(a) for this semi-reduced species to be 9.0. The lower potential couple is pH independent within the range 5 < pH < 10. The optical spectrum of the Mo chromophore has been investigated with spectroelectrochemistry. At high potential, in its resting state, the enzyme exhibits a spectrum characteristic of the Mo-VI form. This changes significantly following bulk electrolysis (-400 mV versus NHE) at an optically transparent, indium-doped tin oxide working electrode, where a single visible electronic maximum at 632 nm is observed, which is comparable with spectra reported previously for the dithionite-reduced enzyme. This two-electron process is chemically reversible by reoxidizing the enzyme at the electrode in the absence of mediators or promoters. The activity of the enzyme has been established by observation of a catalytic current in the presence of DMSO at pH 8, where a sigmoidal (steady state) voltammogram is seen. Electronic supplementary material to this paper (Fig. S 1) can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00775-002-0374-y.
Resumo:
This article examines child welfare workers' understanding of physical child abuse and the Implications for those supervising these workers. The article Is based on the results of a study that involved In-depth Interviews and focus groups with statutory child welfare workers. Analysis revealed that workers' understanding of physical child abuse embodied a wide range of ideas that were generally consistent with existing literature. The study highlights the value and utility of a reflective approach In stimulating and making explicit the theoretical underpinnings of child welfare workers practice. Specific Implications for professional supervision are addressed.
Resumo:
This study reexamined the association between speech rate and memory span in children from kindergarten to sixth grade (N = 152) in order to potentially account for the inconsistencies within the published literature on this topic. Some of the inconsistencies in past research may reflect the different methods adopted in assessing speech rate. In particular, repeating word triples may itself involve memory demands, contaminating the correlation between speech rate and memory span in younger children. Analyses using composite speech rate and memory span measures showed that speech rate for word triples shared variance with memory span that was independent of speech rate for single words. Moreover, speech rate for word triples was largely redundant with age in explaining additional variation in memory span once the effects of speech rate for single words were controlled. (C) 2002 Elsevier Science.
Resumo:
We discuss techniques for producing, manipulating, and measuring qubits encoded optically as vacuum- and single-photon states. We show that a universal set of nondeterministic gates can be constructed using linear optics and photon counting. We investigate the efficacy of a test gate given realistic detector efficiencies.