130 resultados para mosquito habitats
Resumo:
An antigen capture immunoassay to detect West Nile (WN) virus antigen in infected mosquitoes and avian tissues has been developed. With this assay purified WN virus was detected at a concentration of 32 pg/0.1 ml, and antigen in infected suckling mouse brain and laboratory-infected mosquito pools could be detected when the WN virus titer was 10(2.1) to 10(3.7) PFU/0.1 ml. In a blindly coded set of field-collected mosquito pools (n = 100), this assay detected WN virus antigen in 12 of 18 (66.7%) TaqMan-positive pools, whereas traditional reverse transcriptase PCR detected 10 of 18 (55.5%) positive pools. A sample set of 73 organ homogenates from naturally infected American crows was also examined by WN virus antigen capture immunoassay and TaqMan for the presence of WN virus. The antigen capture assay detected antigen in 30 of 34 (88.2%) TaqMan-positive tissues. Based upon a TaqMan-generated standard curve of infectious WN virus, the limit of detection in the antigen capture assay for avian tissue homogenates was approximately 10(3) PFU/0.1 ml. The recommended WN virus antigen capture protocol, which includes a capture assay followed by a confirmatory inhibition assay used to retest presumptive positive samples, could distinguish between the closely related WN and St. Louis encephalitis viruses in virus-infected mosquito pools and avian tissues. Therefore, this immunoassay demonstrates adequate sensitivity and specificity for surveillance of WN virus activity in mosquito vectors and avian hosts, and, in addition, it is easy to perform and relatively inexpensive compared with the TaqMan assay.
Resumo:
Clearing of native vegetation is a major threat to biodiversity in Australia. In Queensland, clearing has resulted in extensive ecosystem transformation, especially in the more fertile parts of the landscape. In this paper, we examine Queensland, Australian and some overseas evidence of the impact of clearing and related fragmentation effects on terrestrial biota. The geographic locus is the semi-arid regions. although we recognise that coastal regions have been extensively cleared. The evidence reviewed here suggests that the reduction of remnant vegetation to 30% will result in the loss of 25-35% of vertebrate fauna, with the full impact not realised for another 50-100 years, or even longer. Less mobile, habitat specialists and rare species appear to be particularly at risk. We propose three broad principles For effective biodiversity conservation in Queensland: (i) regional native vegetation retention thresholds of 50910: (ii) regional ecosystem thresholds of 30%: and (iii) landscape design and planning principles that protect large remnants, preferably > 2000 ha, as core habitats. Under these retention thresholds. no further clearing would be permitted in the extensively cleared biogeographic regions such as Brigalow Belt and New England Tablelands. Some elements of the biota. however, will require more detailed knowledge and targeted retention and management to ensure their security. The application of resource sustainability and economic criteria outlined elsewhere in this volume should be applied to ensure that the biogeographic regions in the north and west of Queensland that are largely intact continue to provide extensive wildlife habitat.
Resumo:
Landscape metrics are widely applied in landscape ecology to quantify landscape structure. However, many are poorly tested and require rigorous validation if they are to serve as reliable indicators of habitat loss and fragmentation, such as Montreal Process Indicator 1.1e. We apply a landscape ecology theory, supported by exploratory and confirmatory statistical techniques, to empirically test landscape metrics for reporting Montreal Process Indicator 1.1e in continuous dry eucalypt forests of sub-tropical Queensland, Australia. Target biota examined included: the Yellow-bellied Glider (Petaurus australis); the diversity of nectar and sap feeding glider species including P. australis, the Sugar Glider P. breviceps, the Squirrel Glider P. norfolcensis, and the Feathertail Glider Acrobates pygmaeus; six diurnal forest birds species; total diurnal bird species diversity; and the density of nectar-feeding diurnal bird species. Two scales of influence were considered: the stand-scale (2 ha), and a series of radial landscape extents (500 m - 2 km; 78 - 1250 ha) surrounding each fauna transect. For all biota, stand-scale structural and compositional attributes were found to be more influential than landscape metrics. For the Yellow-bellied Glider, the proportion of trace habitats with a residual element of old spotted-gum/ironbark eucalypt trees was a significant landscape metric at the 2 km landscape extent. This is a measure of habitat loss rather than habitat fragmentation. For the diversity of nectar and sap feeding glider species, the proportion of trace habitats with a high coefficient of variation in patch size at the 750 m extent was a significant landscape metric. None of the landscape metrics tested was important for diurnal forest birds. We conclude that no single landscape metric adequately captures the response of the region's forest biota per se. This poses a major challenge to regional reporting of Montreal Process Indicator 1.1e, fragmentation of forest types.
Resumo:
The contribution of roof gutters to Aedes aegypti (L.) and Ochlerotatus notoscriptus (Skuse) pupal populations was quantified for the first time in Cairns, Australia. Concurrent yard and roof surveys yielded ill estimated 6,934 mosquito pupae, comprising four species. Roof gutters were all uncommon but productive source of Ae. aegypti in both wet season (n = 11) and dry season (n = 2) surveys, producing 52.6% and 39.5% of the respective populations. First story gutters accounted for 92.3% of the positive gutters. Therefore, treatment of roof gutters is a critical element in Ae. aegypti control campaigns during dengue outbreaks. In wet season yards, the largest standing, crops of Ae. aegypti occurred in garden accoutrements, discarded household items, and rubbish (36.4%, 28.0%, and 20.6%, respectively). In dry season yards, rubbish produced 79.6% of the Ae. aegypti pupae. The number of Ae. aegypti pupae/person was 2.36 and 0.59 for the wet and dry season surveys, respectively.
Resumo:
Anophelines were sampled from 82 locations oil Buka and Bougainville islands in Papua New Guinea by larval collections, carbon dioxide-baited Mosquito traps, and human biting catches. Anopheles farauti s.s. was collected in larval Surveys but infrequently in mosquito traps on both islands; on Buka Island this species was readily collected in human biting catches. Anopheles faraunti 2 was commonly collected in larval surveys on both islands however. it was not collected in either mosquito traps or human biting catches. Anopheles punctulatus was found only on Buka Island, where it was commonly collected as larvae, but rarely in human biting catches and mosquito traps. Anopheles lungae was collected Lis larvae from only I site on Bougainville. Anopheles farauti s.s. led consistently throughout the night (1900-0600 h): small peaks at midnight and dawn were not statistically significant. Of 1,156 An. farauti s.s. specimens examined by enzyme-linked immunosorbent assay for malaria sporozoites. 20 were found to be positive: 12 were positive for Plasmodium falciparum and 8 were positive for P. vivax (247 variant = 5: 210 variant = 3). Anopheles farauti s.s. seems to be the major malaria vector on these islands, whereas An. punctulatus may play a minor role on Buka Island. Anophele farauti 2 is unlikely to be involved in malaria transmission on Buka or Bougainville islands.
Resumo:
We used a network of 20 carbon dioxide- and octenol-supplemented light traps to sample adult mosquitoes throughout Russell Island in southern Moreton Bay, south-east Queensland. Between February and April 2001, an estimated 1365 564 adult female mosquitoes were collected. In contrast to an average catch of 9754 female mosquitoes per trap night on Russell Island, reference traps set on Macleay Island and on the mainland returned average catches of 3172 and 222, respectively. On Russell Island, Ochlerotatus vigilax (Skuse), Coquillettidia linealis (Skuse), Culex annulirostris Skuse and Verrallina funerea (Theobald), known or suspected vectors of Ross River (RR) and/or Barmah Forest (BF) viruses, comprised 89.6% of the 25 taxa collected. When the spatial distributions of the above species were mapped and analysed using local spatial statistics, all were found to be present in highest numbers towards the southern end of the island during most of the 7 weeks. This indicated the presence of more suitable adult harbourage sites and/or suboptimal larval control efficacy. As immature stages and the breeding habitat of Cq. linealis are as yet undescribed, this species in particular presents a considerable impediment to proposed development scenarios. The method presented here of mapping the numbers of mosquitoes throughout a local government area allows specific areas that have high vector numbers to be defined.
Resumo:
Coquillettidia linealis is a severe pest on some of the Moreton Bay islands in Queensland, Australia, but little is known of its breeding habitats and biology. Because of its high abundance and its association with Ross River (RR) and Barmah Forest (BF) viruses by field isolation, its vector competence was evaluated in the laboratory by feeding dilutions of both viruses in blood. For RR, Cq. linealis was of comparable efficiency to Ochlerotatus vigilax (Skuse), recognised as being a major vector. Results were as follows for Cq. linealis and Oc. vigilax , respectively: dose to infect 50%, 10(2.2) and
Resumo:
Two different doses of Ross River virus (1111) were fed to Ochlerotatus vigilax (Skuse), the primary coastal vector in Australia; and blood engorged females were held at different temperatures up to 35 d. After ingesting 10(4.3) CCID50/Mosquito, mosquitoes reared at 18 and 25degreesC (and held at the same temperature) had higher body remnant and head and salivary gland titers than those held at 32degreesC, although infection rates were comparable. At 18, 25, and 32degreesC, respectively, virus was first detected in the salivary glands on days 3, 2, and 3. Based on a previously demonstrated 98.7% concordance between salivary gland infection and transmission, the extrinsic incubation periods were estimated as 5, 4, and 3 d, respectively, for these three temperatures. When Oc. vigilax reared at 18, 25, or 32degreesC were fed a lower dosage of 10(3.3) CCID50 RR/mosquito, and assayed after 7 d extrinsic incubation at these (or combinations of these) temperatures, infection rates and titers were similar. However, by 14 d, infection rates and titers of those reared and held at 18 and 32degreesC were significantly higher and lower, respectively. However, this process was reversible when the moderate 25degreesC was involved, and intermediate infection rates and titers resulted. These data indicate that for the strains of RR and Oc. vigilax used, rearing temperature is unimportant to vector competence in the field, and that ambient temperature variations will modulate or enhance detectable infection rates only after 7 d: extrinsic incubation. Because of the short duration of extrinsic incubation, however, this will do little to influence RR epidemiology, because by this time some Oc. vigilax could be seeking their third blood meal, the latter two being infectious.
Resumo:
The objective of this study was to determine the epidemiological significance of subterranean mosquito breeding sites to the 1993 outbreak of dengue fever (type 2) in the northern Queensland town of Charters Towers, Australia. In recent studies on subterranean mosquito breeding, containers such as wells and service manholes have been shown to be important breeding sites to Australia's only dengue vector, Aedes aegypti (L.). This study demonstrates a direct epidemiological association between subterranean breeding sites and dengue virus infection. The mean distance between residents seropositive for dengue 2 and the nearest subterranean container (113 m) was significantly less than for a randomly selected control (191 m), (F = 81.9; df = 1, 478; P < 0.001). Residents positive for dengue 2 antibodies was 2.47 (95% confidence interval 1.88-3.24) times higher for those living within 160 m of a well or service manhole, compared with those residing further away. These findings emphasize the importance of including subterranean water containers in Ae. aegypti surveillance and control programs.
Resumo:
Coral reefs are one of the most diverse habitats in the world [1], yet our understanding of the processes affecting their biodiversity is limited [1-3]. At the local scale, cleaner fish are thought to have a disproportionate effect, in relation to their abundance and size, on the activity of many other fish species, but confirmation of this species' effect on local fish diversity has proved elusive. The cleaner fish Labroides dimidiatus has major effects on fish activity patterns [4] and may indirectly affect fish demography through the removal of large numbers of parasites [5, 6]. Here we show that small reefs where L. dimidiatus had been experimentally excluded for 18 months had half the species diversity of fish and one-fourth the abundance of individuals. Only fish that move among reefs, however, were affected. These fish include large species that themselves can affect other reef organisms [2, 7]. In contrast, the distribution of resident fish was not affected by cleaner fish. Thus, many fish appear to choose reefs based on the presence of cleaner fish. Our findings indicate that a single small [8] and not very abundant [9] fish has a strong influence on the movement patterns, habitat choice, activity, and local diversity and abundance of a wide variety of reef fish species.
Resumo:
Management of coastal environments requires understanding of ecological relationships among different habitats and their biotas. Changes in abundance and distribution of mangroves, like those of other coastal habitats, have generally been interpreted in terms of changes in biodiversity or fisheries resources within individual stands. In several parts of their range, anthropogenically increased inputs of sediment to estuaries have led to the spread of mangroves. There is, however, little information on the relative ecological properties, or conservational values, of stands of different ages. The faunal, floral and sedimentological properties of mangrove (Avicennia marina var. australasica) stands of two different ages in New Zealand has been compared. Older (>60 years) and younger (3-12 years) stands showed clear separation on the basis of environmental characteristics and benthic macrofauna. Numbers of faunal taxa were generally larger at younger sites, and numbers of individuals of several taxa were also larger at these sites. The total number of individuals was not different between the two age-classes, largely due to the presence of large numbers of the surface-living gastropod Potamopyrgus antipodarum at the older sites. It is hypothesized that as mangrove stands mature, the focus of faunal diversity may shift from the benthos to animals living on the mangrove plants themselves, such as insects and spiders, though these were not included in the present study. Differences in the faunas were coincident with differences in the nature of the sediment. Sediments in older stands were more compacted and contained more organic matter and leaf litter. Measurement of leaf chemistry suggested that mangrove plants in the younger stands were able to take up more N and P than those in the older stands. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The ability of introduced organisms to invade undisturbed native habitats is a major concern in conservation biology and has resulted in a re-evaluation of the introduction of exotic biocontrol agents, especially of generalist predators. One such agent is Stratiolaelaps miles (Berlese), a predatory mite described from Italy, known from throughout the Holarctic, and apparently accidentally introduced to other areas of the world, including Australia. Initial investigations revealed that putative S. miles could be found in both disturbed and relatively pristine habitats in Queensland, Australia. However, analysis of the mitochondrial DNA of five populations showed most to be highly divergent genetically. Subsequent morphological analysis established two species groups: the lamington-group from cool-temperate to subtropical rainforests in Eastern Australia and the more eurytopic miles-group with a cosmopolitan distribution. We describe two new species from each of these complexes (Stratiolaelaps womersleyi, Stratiolaelaps lamington; Stratiolaelaps marilyn, Stratiolaelaps lorna, respectively), and resurrect Stratiolaelaps scimitus (Womersley), a species which often appears to have been confused with S. miles. Additionally, the large genetic distances among morphologically homogenous species in the miles-group suggest that the apparently cosmopolitan S. miles may be composed of a suite of cryptic species of potentially varying utility in biological control. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
Several schemes have been developed to help select the locations of marine reserves. All of them combine social, economic, and biological criteria, and few offer any guidance as to how to prioritize among the criteria identified. This can imply that the relative weights given to different criteria are unimportant. Where two sites are of equal value ecologically; then socioeconomic criteria should dominate the choice of which should be protected. However, in many cases, socioeconomic criteria are given equal or greater weight than ecological considerations in the choice of sites. This can lead to selection of reserves with little biological value that fail to meet many of the desired objectives. To avoid such a possibility, we develop a series of criteria that allow preliminary evaluation of candidate sites according to their relative biological values in advance of the application of socioeconomic criteria. We include criteria that,. while not strictly biological, have a strong influence on the species present or ecological processes. Out scheme enables sites to be assessed according to their biodiversity, the processes which underpin that diversity, and the processes that support fisheries and provide a spectrum of other services important to people. Criteria that capture biodiversity values include biogeographic representation, habitat representation and heterogeneity, and presence of species or populations of special interest (e.g., threatened species). Criteria that capture sustainability of biodiversity and fishery values include the size of reserves necessary to protect viable habitats, presence of exploitable species, vulnerable life stages, connectivity among reserves, links among ecosystems, and provision of ecosystem services to people. Criteria measuring human and natural threats enable candidate sites to be eliminated from consideration if risks are too great, but also help prioritize among sites where threats can be mitigated by protection. While our criteria can be applied to the design of reserve networks, they also enable choice of single reserves to be made in the context of the attributes of existing protected areas. The overall goal of our scheme is to promote the development of reserve networks that will maintain biodiversity and ecosystem functioning at large scales. The values of eco-system goods and services for people ultimately depend on meeting this objective.
Resumo:
To date there have been few quantitative studies of the distribution of, and relative habitat utilisation by, koalas in the mulgalands of Queensland. To examine these parameters we applied habitat-accessibility and relative habitat-utilisation indices to estimates of faecal pellet density sampled at 149 sites across the region. Modelling the presence of pellets using logistic regression showed that the potential range of accessible habitats and relative habitat use varied greatly across the region, with rainfall being probably the most important determinant of distribution. Within that distribution, landform and rainfall were both important factors affecting habitat preference. Modelling revealed vastly different probabilities of finding a pellet under trees depending on the tree species, canopy size, and location within the region.