126 resultados para evolution algorithm
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? We provide an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling n-qubit Hamiltonian and local unitary operations. It follows that universal quantum computation can be performed using any entangling interaction and local unitary operations.
Resumo:
What interactions are sufficient to simulate arbitrary quantum dynamics in a composite quantum system? Dodd [Phys. Rev. A 65, 040301(R) (2002)] provided a partial solution to this problem in the form of an efficient algorithm to simulate any desired two-body Hamiltonian evolution using any fixed two-body entangling N-qubit Hamiltonian, and local unitaries. We extend this result to the case where the component systems are qudits, that is, have D dimensions. As a consequence we explain how universal quantum computation can be performed with any fixed two-body entangling N-qudit Hamiltonian, and local unitaries.
Resumo:
ITS2 sequences are used extensively in molecular taxonomy and population genetics of arthropods and other animals yet little is known about the molecular evolution of ITS2. We studied the secondary structure of ITS2 in species from each of the six main lineages of hard ticks (family Ixodidae). The ITS2 of these ticks varied in length from 679 bp in Ixodes scapularis to 1547 bp in Aponomma concolor. Nucleotide content varied also: the ITS2 of ticks from the Prostriata lineage (Ixodes spp.) had 46-49% GC whereas ITS2 sequences of ticks from the Metastriata lineage (all other hard ticks) had 61-62% GC. Despite variation in nucleotide sequence, the secondary structure of the ITS2 of all of these ticks apparently has five domains. Stems 1, 3, 4 and 5 of this secondary structure were obvious in all of the species studied. However, stem 2 was not always obvious despite the fact that it is flanked by highly conserved sequence motifs in the adjacent stems, stems 1 and 3. The ITS2 of hard ticks has apparently evolved mostly by increases and decreases in length of the nucleotide sequences, which caused increases, and decreases in the length of stems of the secondary structure. This is most obvious when stems of the secondary structures of the Prostriata (Ixodes spp.) are compared to those of the Metastriata (all other hard ticks). Increases in the size of the ITS2 may have been caused by replication slippage which generated large repeats, like those seen in Haemaphysalis humerosa and species from the Rhipicepalinae lineage, and the small repeats found in species from the other lineages of ticks.
Resumo:
Objective: To describe the natural history of rheumatic manifestations of Ross River virus (RRV) disease. Design: Prospective longitudinal clinical review. Setting: North Queensland local government areas of Cairns, Douglas, Mareeba and Atherton during January to May 1998. Participants: General practice patients diagnosed with RRV disease on the basis of symptoms and a positive RRV IgM result. Main outcome measures: Rheumatic symptoms and signs assessed as soon as possible after disease onset and on two subsequent occasions (up to 6.5 months after onset). Results: 57 patients were recruited, 47 of whom were reviewed three times (at means of 1.1, 2.4 and 3.6 months after disease onset). Results are reported for these 47: 46 (98%) complained of joint pain at first review, with the ankles, wrists, fingers, knees and metacarpophalangeal joints (II-IV) most commonly involved. Prevalence of joint pain decreased progressively on second and third reviews, both overall (92% and 68% of patients, respectively), and in the five joints most commonly affected. The prevalence of other common rheumatic symptoms and signs, and use of non-steroidal anti-inflammatory drugs, also progressively declined over the three reviews. Conclusions: Earlier studies may have overestimated the prevalence and duration of symptoms in RRV disease. Progressive resolution over 3-6 months appears usual.
Resumo:
Libraries of cyclic peptides are being synthesized using combinatorial chemistry for high throughput screening in the drug discovery process. This paper describes the min_syn_steps.cpp program (available at http://www.imb.uq.edu.au/groups/smythe/tran), which after inputting a list of cyclic peptides to be synthesized, removes cyclic redundant sequences and calculates synthetic strategies which minimize the synthetic steps as well as the reagent requirements. The synthetic steps and reagent requirements could be minimized by finding common subsets within the sequences for block synthesis. Since a brute-force approach to search for optimum synthetic strategies is impractically large, a subset-orientated approach is utilized here to limit the size of the search. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The members of the Anopheles punctulatus group are major vectors of malaria and Bancroftian filariasis in the southwest Pacific region. The group is comprised of 12 cryptic species that require DNA-based tools for species identification. From 1984 to 1998 surveys were carried out in northern Australia, Papua New Guinea and on islands in the southwest Pacific to determine the distribution of the A. punctulatus group. The results of these surveys have now been completed and have generated distribution data from more than 1500 localities through this region. Within this region several climatic and geographical barriers were identified that restricted species distribution and gene flow between geographic populations. This information was further assessed in light of a molecular phylogeny derived from the ssrDNA (18S). Subsequently, hypotheses have been generated on the evolution and distribution of the group so that future field and laboratory studies may be approached more systematically. This study suggested that the ability for widespread dispersal was found to have appeared independently in species that show niche-specific habitat preference (Anopheles farauti s.s. and A. punctulatus) and conversely in species that showed diversity in their larval habitat (Anopheles farauti 2). Adaptation to the monsoonal climate of northern Australia and southwest Papua New Guinea was found to have appeared independently in A. farauti s.s., A. farauti 2 and Anopheles farauti 3. Shared or synapomorphic characters were identified as saltwater tolerance (A. farauti s.s. and Anopheles farauti 7) and elevational affinities above 1500 m (Anopheles farauti 5, Anopheles farauti 6 and A. farauti 2). (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
It has been argued that power-law time-to-failure fits for cumulative Benioff strain and an evolution in size-frequency statistics in the lead-up to large earthquakes are evidence that the crust behaves as a Critical Point (CP) system. If so, intermediate-term earthquake prediction is possible. However, this hypothesis has not been proven. If the crust does behave as a CP system, stress correlation lengths should grow in the lead-up to large events through the action of small to moderate ruptures and drop sharply once a large event occurs. However this evolution in stress correlation lengths cannot be observed directly. Here we show, using the lattice solid model to describe discontinuous elasto-dynamic systems subjected to shear and compression, that it is for possible correlation lengths to exhibit CP-type evolution. In the case of a granular system subjected to shear, this evolution occurs in the lead-up to the largest event and is accompanied by an increasing rate of moderate-sized events and power-law acceleration of Benioff strain release. In the case of an intact sample system subjected to compression, the evolution occurs only after a mature fracture system has developed. The results support the existence of a physical mechanism for intermediate-term earthquake forecasting and suggest this mechanism is fault-system dependent. This offers an explanation of why accelerating Benioff strain release is not observed prior to all large earthquakes. The results prove the existence of an underlying evolution in discontinuous elasto-dynamic, systems which is capable of providing a basis for forecasting catastrophic failure and earthquakes.
Resumo:
We introduce a conceptual model for the in-plane physics of an earthquake fault. The model employs cellular automaton techniques to simulate tectonic loading, earthquake rupture, and strain redistribution. The impact of a hypothetical crustal elastodynamic Green's function is approximated by a long-range strain redistribution law with a r(-p) dependance. We investigate the influence of the effective elastodynamic interaction range upon the dynamical behaviour of the model by conducting experiments with different values of the exponent (p). The results indicate that this model has two distinct, stable modes of behaviour. The first mode produces a characteristic earthquake distribution with moderate to large events preceeded by an interval of time in which the rate of energy release accelerates. A correlation function analysis reveals that accelerating sequences are associated with a systematic, global evolution of strain energy correlations within the system. The second stable mode produces Gutenberg-Richter statistics, with near-linear energy release and no significant global correlation evolution. A model with effectively short-range interactions preferentially displays Gutenberg-Richter behaviour. However, models with long-range interactions appear to switch between the characteristic and GR modes. As the range of elastodynamic interactions is increased, characteristic behaviour begins to dominate GR behaviour. These models demonstrate that evolution of strain energy correlations may occur within systems with a fixed elastodynamic interaction range. Supposing that similar mode-switching dynamical behaviour occurs within earthquake faults then intermediate-term forecasting of large earthquakes may be feasible for some earthquakes but not for others, in alignment with certain empirical seismological observations. Further numerical investigation of dynamical models of this type may lead to advances in earthquake forecasting research and theoretical seismology.
Resumo:
Latitudinal clines provide natural systems that may allow the effect of natural selection on the genetic variance to be determined. Ten clinal populations of Drosophila serrata collected from the eastern coast of Australia were used to examine clinal patterns in the trait mean and genetic variance of the life-history trait egg-to-adult development time. Development time significantly lengthened from tropical areas to temperate areas. The additive genetic variance for development time in each population was not associated with latitude but was associated with the population mean development time. Additive genetic variance tended to be larger in populations with more extreme development times and appeared to be consistent with allele frequency change. In contrast, the nonadditive genetic variance was not associated with the population mean but was associated with latitude. Levels of nonadditive genetic variance were greatest in the region of the cline where the gradient in the change in mean was greatest, consistent with Barton's (1999) conjecture that the generation of linkage disequilibrium may become an important component of the genetic variance in systems with a spatially varying optimum.
Resumo:
Field populations of Drosophila serrata display reproductive character displacement in cuticular hydrocarbons (CHCs) when sympatric with Drosophila birchii. We have previously shown that the naturally occurring pattern of reproductive character displacement can be experimentally replicated by exposing field allopatric populations of D. serrata to experimental sympatry with D. birchii. Here, we tested whether the repeated evolution of reproductive character displacement in natural and experimental populations was a consequence of genetic constraints on the evolution of CHCs. The genetic variance-covariance (G) matrices for CHCs were determined for populations of D. serrata that had evolved in either the presence or absence of D. birchii under field and experimental conditions. Natural selection on mate recognition under both field and experimental sympatric conditions increased the genetic variance in CHCs consistent with a response to selection based on rare alleles. A close association between G eigenstructure and the eigenstructure of the phenotypic divergence (D) matrix in natural and experimental populations suggested that G matrix eigenstructure may have determined the direction in which reproductive character displacement evolved during the reinforcement of mate recognition.
Resumo:
Numerous hypotheses have been proposed to explain latitudinal gradients in species richness, but all are subject to ongoing debate. Here we examine Rohde's (1978, 1992) hypothesis, which proposes that climatic conditions at low latitudes lead to elevated rates of speciation. This hypothesis predicts that rates of molecular evolution should increase towards lower latitudes, but this prediction has never been tested. We discuss potential links between rates of molecular evolution and latitudinal diversity gradients, and present the first test of latitudinal variation in rates of molecular evolution. Using 45 phylogenetically independent, latitudinally separated pairs of bird species and higher taxa, we compare rates of evolution of two mitochondrial genes and DNA-DNA hybridization distances. We find no support for an effect of latitude on rate of molecular evolution. This result casts doubt on the generality of a key component of Rohde's hypothesis linking climate and speciation.