129 resultados para automatic target detection
Resumo:
The flock-level sensitivity of pooled faecal culture and serological testing using AGID for the detection of ovine Johne's disease-infected flocks were estimated using non-gold-standard methods. The two tests were compared in an extensive field trial in 296 flocks in New South Wales during 1998. In each flock, a sample of sheep was selected and tested for ovine Johne's disease using both the AGID and pooled faecal culture. The flock-specificity of pooled faecal culture also was estimated from results of surveillance and market-assurance testing in New South Wales. The overall flock-sensitivity of pooled faecal culture was 92% (95% CI: 82.4 and 97.4%) compared to 61% (50.5 and 70.9%) for serology (assuming that both tests were 100% specific). In low-prevalence flocks (estimated prevalence
Resumo:
A rapid and reliable polymerase chain reaction (PCR)-based protocol was developed for detecting zygosity of the 1BL/1RS translocation in hexaploid wheat. The protocol involved a multiplex PCR with 2 pairs of oligonucleotide primers, rye-specific Ris-1 primers, and consensus 5S intergenic spacer (IGS) primers, and digestion of the PCR products with the restriction enzyme, MseI. A small piece of alkali-treated intact leaf tissue is used as a template for the PCR, thereby eliminating the necessity for DNA extraction. The test is simple, highly sensitive, and rapid compared with the other detection systems of 1BS1RS heterozygotes in hexaploid wheat. PCR results were confirmed with AFLP analyses. Diagnostic tests for 1BL/1RS translocation based on Sec-1-specific ELISA, screening for chromosome arm 1RS controlled rust resistance locus Yr9, and the PCR test differed in their ability to detect heterozygotes. The PCR test and rust test detected more heterozygotes than the ELISA test. The PCR test is being used to facilitate S1 family recurrent selection in the Germplasm Enhancement Program of the Australian Northern Wheat Improvement Program. A combination of the PCR zygosity test with other markers currently being implemented in the breeding program makes this test economical for 1BL/1RS characterisation of S1 families.
Resumo:
Approximately half of the motoneurons generated during normal embryonic development undergo programmed cell death. Most of this death occurs during the time when synaptic connections are being formed between motoneurons and their target, skeletal muscle. Subsequent muscle activity stemming from this connection helps determine the final number of surviving motoneurons. These observations have given rise to the idea that motoneuron survival is dependent upon access to muscle derived trophic factors, presumably through intact neuromuscular synapses. However, it is not yet understood how the muscle regulates the supply of such trophic factors, or if there are additional mechanisms operating to control the fate of the innervating motoneuron. Recent observations have highlighted target independent mechanisms that also operate to support the survival of motoneurons, such as early trophic-independent periods of motoneuron death, trophic factors derived from Schwann cells and selection of motoneurons during pathfinding. Here we review recent investigations into motoneuron cell death when the molecular signalling between motoneurons and muscle has been genetically disrupted. From these studies, we suggest that in addition to trophic factors from muscle and/or Schwann cells, specific adhesive interactions between motoneurons and muscle are needed to regulate motoneuron survival. Such interactions, along with intact synaptic basal lamina, may help to regulate the supply and presentation of trophic factors to motoneurons.
Resumo:
Objectives: To study the influence of different diagnostic criteria on the prevalence of diabetes mellitus and characteristics of those diagnosed. Design and setting: Retrospective analysis of data from the general-practice-based Australian Diabetes Screening Study (January 1994 to June 1995). Participants: 5911 people with no previous diagnosis of diabetes, two or more symptoms or risk factors for diabetes, a random venous plasma glucose (PG) level > 5.5 mmol/L and a subsequent oral glucose tolerance test (OGTT) result. Main outcome measure: Prevalence of undiagnosed diabetes based on each of three sets of criteria: 1997 criteria of the American Diabetes Association (ADA), 1996 two-step screening strategy of the Australian Diabetes Society (ADS) (modified according to ADA recommendations about lowered diagnostic fasting PG level), and 1999 definition of the World Health Organization (WHO). Results: Prevalence estimates for undiagnosed diabetes using the American (ADA), Australian (ADS) and WHO criteria (95% CI) were 9.4% (8.7%-10.1%), 16.0% (15.3%-16.7%) and 18.1% (17.1%-19.1%), respectively. People diagnosed with diabetes by fasting PG level (common to all sets of criteria) were more likely to be male and younger than those diagnosed only by 2 h glucose challenge PG level (Australian and WHO criteria only). The Australian (ADS) stepwise screening strategy detected 88% of those who met the WHO criteria for diabetes, including about three-quarters of those with isolated post-challenge hyperglycaemia. Conclusion: The WHO criteria (which include an OGTT result) are preferable to the American (ADA) criteria (which rely totally on fasting PG level), as the latter underestimated the prevalence of undiagnosed diabetes by almost a half. The Australian (ADS) strategy identified most of those diagnosed with diabetes by WHO criteria.
Resumo:
Using the Roche LightCycler we developed a real-time reverse transcriptase polymerase chain reaction (RT-PCR) assay using the Influenza A LightCycler RT-PCR (FA-LC-RTPCR) for the rapid detection of Influenza A. The assay was used to examine 178 nasopharyngeal aspirate (NPA) samples, from patients with clinically recognised respiratory tract infection, for the presence of Influenza A RNA. The results were then compared to a testing algorithm combining direct immunofluorescent assy (DFA) and a culture augmented DFA (CA-DFA) assay. In total, 76 (43%) specimens were positive and 98 (55%) specimens were negative by both the FA-LC-RTPCR and the DFA and CA-DFA algorithm. In addition, the FA-LC-RTPCR detected a further 4 (2%) positive specimens, which were confirmed by a conventional RT-PCR method. The high level of sensitivity and specificity, combined with the rapid turnaround time for results, makes the LC-RT-PCR assay suitable for the detection of Influenza A in clinical specimens.
Resumo:
The recent description of the respiratory pathogen human metapneumovirus (hMPV) has highlighted a deficiency in current diagnostic techniques for viral agents associated with acute lower respiratory tract infections. We describe two novel approaches to the detection of viral RNA by use of reverse transcriptase PCR (RT-PCR). The PCR products were identified after capture onto a solid-phase medium by hybridization with a sequence-specific, biotinylated oligonucleotide probe. The assay was applied to the screening of 329 nasopharyngeal aspirates sampled from patients suffering from respiratory tract disease. These samples were negative for other common microbial causes of respiratory tract disease. We were able to detect hMPV sequences in 32 (9.7%) samples collected from Australian patients during 2001. To further reduce result turnaround times we designed a fluorogenic TaqMan oligoprobe and combined it with the existing primers for use on the LightCycler platform. The real-time RT-PCR proved to be highly reproducible and detected hMPV in an additional 6 out of 62 samples (9.6%) tested during the comparison of the two diagnostic approaches. We found the real-time RT-PCR to be the test of choice for future investigation of samples for hMPV due to its speed, reproducibility, specificity, and sensitivity.
Resumo:
Detection of a circumferential crack in a hollow section beam is investigated using coupled response measurements. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. This matrix defines the relationship between the displacements and forces across the crack section and is derived by applying fundamental fracture mechanics theory. The suitability of the mode coupling methodology is first demonstrated analytically. Laboratory test results are then presented for circular hollow section beams with artificially generated cracks of varying severity. It is shown that this method has the potential as a damage detection tool for mechanical structures. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Three Herpes Simplex Virus LightCycler polymerase chain reaction assays were compared for the detection of herpes simplex virus in 48 swab specimens. The assays comprised of one in-house assay and two commercial kits: the Artus HSV LC RealArt PCR kit and the Roche LightCycler HSV 1/2 Detection kit. On the whole, the three assays had comparable sensitivities. However, differentiation of herpes simplex virus types 1 and 2 by melting curve analysis was problematic in all assays. Overall, the results highlight the limitations of typing herpes simplex virus by melting curve analysis.
Resumo:
VCAM-1 (vascular cell adhesion molecule-1) and Sox18 are involved in vascular development. VCAM-1 is an important adhesion molecule that is expressed on endothelial cells and has a critical role in endothelial activation, inflammation, lymphatic pathophysiology, and atherogenesis. The Sry-related high mobility group box factor Sox18 has previously been implicated in endothelial pathologies. Mutations in human and mouse Sox18 leads to hypotrichosis and lymphedema. Furthermore, both Sox18 and VCAM-1 have very similar spatio-temporal patterns of expression, which is suggestive of crosstalk. We use biochemical techniques, cell culture systems, and the ragged opossum (RaOP) mouse model with a naturally occurring mutation in Sox18 to demonstrate that VCAM-1 is an important target of Sox18. Transfection, site-specific mutagenesis, and gel shift analyses demonstrated that Sox18 directly targeted and trans-activated VCAM-1 expression. Importantly, the naturally occurring Sox18 mutant attenuates the expression and activation of VCAM-1 in vitro. Furthermore, in vivo quantitation of VCAM-1 mRNA levels in wild type and RaOP mice demonstrates that RaOP animals show a dramatic and significant reduction in VCAM-1 mRNA expression in lung, skin, and skeletal muscle. Our observation that the VCAM-1 gene is an important target of SOX18 provides the first molecular insights into the vascular abnormalities in the mouse mutant ragged and the human hypotrichosis-lymphedematelangiectasia disorder.
Resumo:
WT1 encodes a transcription factor involved in kidney development and tumorigenesis. Using representational difference analysis, we identified a new set of WT1 targets, including a homologue of the Drosophila receptor tyrosine kinase regulator, sprouty. Sprouty1 was up-regulated in cell lines expressing wild-type but not mutant WT1. WT1 bound to the endogenous sprouty1 promoter in vivo and directly regulated sprouty1 through an early growth response gene-1 binding site. Expression of Sprouty1 and WT1 overlapped in the developing metanephric mesenchyme, and Sprouty1, like WT1, plays a key role in the early steps of glomerulus formation. Disruption of Sprouty1 expression in embryonic kidney explants by antisense oligonucleotides reduced condensation of the metanephric mesenchyme, leading to a decreased number of glomeruli. In addition, sprouty1 was expressed in the ureteric tree and antisense-treated ureteric trees had cystic lumens. Therefore, sprouty1 represents a physiologically relevant target gene of WT1 during kidney development.
Resumo:
We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WW or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.11126 potentially discriminated between WW and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2132 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.676, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species.
Resumo:
We evaluated the ability of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) to detect West Nile virus (WNV) antibodies in domestic mammals. Sera were collected from experimentally infected horses, cats, and pigs at regular intervals and screened in ELISAs and plaque reduction neutralization tests. The diagnostic efficacies of these techniques were similar.