164 resultados para atom chip


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cold rubidium atoms are subjected to an amplitude-modulated far-detuned standing wave of light to form a quantum-driven pendulum. Here we discuss the dynamics of these atoms. Phase space resonances and chaotic transients of the system exhibit dynamics which can be useful in many atom optics applications as they can be utilized as means for phase space state preparation. We explain the occurrence of distinct peaks in the atomic momentum distribution, analyse them in detail and give evidence for the importance of the system for quantum chaos and decoherence studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The new science of nonlinear atom optics and atom lasers is evolving rapidly. There are similarities between many related areas in modern photonic and atom optics, particularly at the mean-field level. In both cases we can often use classical nonlinear wave equations to describe classical solitons, vortices, and other nonlinear structure. Atom-molecular coupling can be used to play the role of second-harmonic generation. This leads to novel types of soliton. In addition, quantum effects at low densities are likely to be readily observable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We give an asymptotic analytic solution for the generic atom-laser system with gain in a D-dimensional trap, and show that this has a non-Thomas-Fermi behavior. The effect is due to Bose-enhanced condensate growth, which creates a local-density maximum and a corresponding outward momentum component. In addition, the solution predicts amplified center-of-mass oscillations, leading to enhanced center-of-mass temperature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mesoporous Ti-substituted aluminophosphates (AlPOs) with a hexagonal, cubic and lamellar pore structure, characteristic of MCM-41, MCM-48. and MCM-50, respectively, were synthesized. The stability of these mesophases upon template removal was studied. The pore structures, surface properties, and local atom environments of Al, P, and Ti of the hexagonal and cubic Ti-containing mesoporous products were extensively characterized using X-ray diffraction, magic angle spinning nuclear magnetic resonance, AAS, XPS, ultraviolet-visible, and adsorption of nitrogen and water vapor techniques while the lamellar mesophase was not further characterized due to its very poor thermal stability. Ti-containing mesoporous AlPO materials show a reasonable thermal stability upon template removal, a hydrophilic surface property, and high porosity showing application potentials in catalytic oxidation of hydrocarbons. (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We are currently in the midst of a second quantum revolution. The first quantum revolution gave us new rules that govern physical reality. The second quantum revolution will take these rules and use them to develop new technologies. In this review we discuss the principles upon which quantum technology is based and the tools required to develop it. We discuss a number of examples of research programs that could deliver quantum technologies in coming decades including: quantum information technology, quantum electromechanical systems, coherent quantum electronics, quantum optics and coherent matter technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-speed milling (HSM) has many advantages over conventional machining. Among these advantages, the lower cutting force associated with the machining process is of particular significance for Nitinol alloys because their machined surfaces show less strain hardening. In this article, a systematic study has been carried out to investigate the machining characteristics of a Ni50.6Ti49.4 alloy in HSM. The effects of cutting speed, feed rate, and depth of cut on machined surface characteristics and tool wear are studied. It is found that an increase in cutting speed has resulted in a better surface finish and less work hardening. This is attributed to the reduction of chip cross-sectional area or chip thickness, which thus leads to a lower cutting force or load.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate complete characterization of a two-qubit entangling process-a linear optics controlled-NOT gate operating with coincident detection-by quantum process tomography. We use a maximum-likelihood estimation to convert the experimental data into a physical process matrix. The process matrix allows an accurate prediction of the operation of the gate for arbitrary input states and a calculation of gate performance measures such as the average gate fidelity, average purity, and entangling capability of our gate, which are 0.90, 0.83, and 0.73, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper reports a parametric investigation and development of grinding technologies for micro aspherical mould inserts using parallel grinding method. The parametric investigation revealed that at nanometric scale the undeformed chip thickness has little influence on the surface finish of ground inserts. The grinding trace spacing has a slightly larger influence on the surface finish. A new technique was developed to true and dress the resin bonded micro wheels with mesh size of #3000, which produced a satisfactory wheel form accuracy and relatively high grain packing density. A form error compensation technique was also developed, with which mould inserts of submicron form accuracy were consistently produced. Using the developed technologies, micro aspherical inserts of diameters ranging from 200 mu m to 1000 mu m with surface finish of around 10 nm and form error of similar to 0.2-0.4 mu m were successfully fabricated. (c) 2005 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two N-based isomeric copper(II) complexes of the macrocycle trans-6,13-dimethyl-6,13-bis(dimethylamino)1,4,8,11-tetraazacyclotetradecane (L(3)) have been synthesized and characterised spectroscopically and structurally: alpha-[CuL(3)(OH2)(2)]Cl-2, monoclinic, space group C2/m, a = 12.908(4), b = 12.433(2), c = 7.330(2) Angstrom, beta = 105.87(2)degrees, Z = 2; beta-[CuL(3)(OClO3)(2)]. 2H(2)O, monoclinic, space group P2(1)/c, a = 9.708(3), b = 9.686(3), c = 14.202(4) Angstrom, beta = 106.17(1)degrees, Z = 2. The two isomers exhibit very similar co-ordination spheres but significantly different visible electronic maxima. This difference is attributed to an intramolecular N ... H contact between the pendant dimethylamino group and an adjacent secondary amine H atom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The squeezing properties of the fluorescence field emitted by a two-level atom driven by a coherent laser field in a squeezed vacuum are calculated. We show that in the region of the anomalous resonance fluorescence the emitted field exhibits squeezing that is much larger than that in the input squeezed vacuum. The squeezing spectrum attains a minimum value that corresponds to 75% squeezing. We also find that, in the total fluorescence field, squeezing attains an optimum achievable value in the fluorescence field emitted by a two-level atom. The optimum squeezing is associated with the collapse of the system into a pure state. (C) 1997 Optical Society of America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel flow-tagging technique is presented which was employed to measure gas velocities in the free stream of a shock tube. This method is based on the laser spectroscopic techniques of Laser-Enhanced Ionisation (LEI) and Laser-Induced Fluorescence (LIF). The flow in the shock tube is seeded with small amounts of sodium, and LEI is used to produce a substantial depletion of neutral sodium atom concentration in a well-defined region of the flow, by using two wavelength-resonance excitation and subsequent collisional ionisation. At a specific time delay, single-laser-pulse planar LIF is utilised to produce a two-dimensional (2-D) inverse image of the depleted tagged region downstream of the flow. By measuring the displacement of the tagged region, free stream velocities in a shock tube were determined. Large variations in the concentration of sodium seeded into the flow were observed and even in the presence of these large variations accurate free-stream velocity measurements were obtained. The experimentally determined value for velocity compares very well with the predicted velocity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluorescence spectrum of a strongly driven two-level atom located inside an optical cavity damped by a narrow-bandwidth squeezed vacuum is studied. We use a dressed atom model approach, first applied to squeezed vacuum problems by Yeoman and Barnett, to derive the master equation of the system and discuss the role of the cavity and the squeezed vacuum in the narrowing of the spectral lines and the population trapping effect. We find that in the presence of a single-mode cavity the effect of squeezing on the fluorescence spectrum is more evident in the linewidths of the Rabi sidebands rather than in the linewidth of the central component. Even in the absence of squeezing, the cavity can reduce the linewidth of the central component almost to zero, whereas the Rabi sidebands can be narrowed only to some finite value. In the presence of a two-mode cavity and a two-mode squeezed vacuum the signature of squeezing is evident in the linewidths of all spectral lines. We also establish that the narrowing of the spectral lines is very sensitive to the detuning of the driving field from the atomic resonance. Moreover, we find that the population trapping effect, predicted for the broadband squeezed vacuum case, may appear in a narrow-bandwidth case only if the input squeezed modes are perfectly matched to the cavity modes and if there is non-zero squeezing at the Rabi sidebands.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider the quantum dynamics of a neutral atom Bose-Einstein condensate in a double-well potential, including many-body hard-sphere interactions. Using a mean-field factorization we show that the coherent oscillations due to tunneling are suppressed when the number of atoms exceeds a critical value. An exact quantum solution, in a two-mode approximation, shows that the mean-field solution is modulated by a quantum collapse and revival sequence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under the conditions of the rotating wave approximation (RWA), a transition strongly driven by a resonant oscillating field displays the well known symmetric Autler-Townes doublet. However, if the counter-rotating component, neglected in the RWA, is taken into account, the Bloch-Siegert shift gives rise to an Autler-Townes doublet of unequal intensity even in the case of a resonant driving field. This effect is investigated theoretically in a V-shaped three-level double-resonance configuration and the results are presented in this paper. An interesting observation is that the level of asymmetry not only depends on the driving-field intensity but also on the characteristics of the driven system including relaxation rates and equilibrium population distributions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Zn-II atom in [Zn(C2H8N2)(3)](NO3)(2) has a distorted octahedral geometry of D-3 symmetry With three ethylenediamine bidentate Ligands completing the coordination.