114 resultados para Split application
Resumo:
Trials conducted in Queensland, Australia between 1997 and 2002 demonstrated that fungicides belonging to the triazole group were the most effective in minimising the severity of infection of sorghum by Claviceps africana, the causal agent of sorghum ergot. Triadimenol ( as Bayfidan 250EC) at 0.125 kg a. i./ha was the most effective fungicide. A combination of the systemic activated resistance compound acibenzolar-S-methyl ( as Bion 50WG) at 0.05 kg a. i./ha and mancozeb ( as Penncozeb 750DF) at 1.5 kg a. i./ha has the potential to provide protection against the pathogen, should triazole-resistant isolates be detected. Timing and method of fungicide application are important. Our results suggest that the triazole fungicides have no systemic activity in sorghum panicles, necessitating the need for multiple applications from first anthesis to the end of flowering, whereas acibenzolar-S-methyl is most effective when applied 4 days before flowering. The flat fan nozzles tested in the trials provided higher levels of protection against C. africana and greater droplet deposition on panicles than the tested hollow cone nozzles. Application of triadimenol by a fixed wing aircraft was as efficacious as application through a tractor-mounted boom spray.
Resumo:
In microarray studies, the application of clustering techniques is often used to derive meaningful insights into the data. In the past, hierarchical methods have been the primary clustering tool employed to perform this task. The hierarchical algorithms have been mainly applied heuristically to these cluster analysis problems. Further, a major limitation of these methods is their inability to determine the number of clusters. Thus there is a need for a model-based approach to these. clustering problems. To this end, McLachlan et al. [7] developed a mixture model-based algorithm (EMMIX-GENE) for the clustering of tissue samples. To further investigate the EMMIX-GENE procedure as a model-based -approach, we present a case study involving the application of EMMIX-GENE to the breast cancer data as studied recently in van 't Veer et al. [10]. Our analysis considers the problem of clustering the tissue samples on the basis of the genes which is a non-standard problem because the number of genes greatly exceed the number of tissue samples. We demonstrate how EMMIX-GENE can be useful in reducing the initial set of genes down to a more computationally manageable size. The results from this analysis also emphasise the difficulty associated with the task of separating two tissue groups on the basis of a particular subset of genes. These results also shed light on why supervised methods have such a high misallocation error rate for the breast cancer data.
Resumo:
In order to meet increasingly stringent European discharge standards, new applications and control strategies for the sustainable removal of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offers great opportunities to remove ammonia in fully autotrophic systems with biomass retention. No organic carbon is needed in such nitrogenremoval system, since ammonia is used a selectron donor for nitrite reduction. The nitrite can be produced from ammonia in oxygen-limited biofilm systems or in continuous processes without biomass retention. For successful implementation of the combined processes, accurate biosensors for measuring ammonia and nitrite concentrations, insight inthe complex microbial communities involved, and new control strategies have to be developed and evaluated.
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
The ability to generate enormous random libraries of DNA probes via split-and-mix synthesis on solid supports is an important biotechnological application of colloids that has not been fully utilized to date. To discriminate between colloid-based DNA probes each colloidal particle must be 'encoded' so it is distinguishable from all other particles. To this end, we have used novel particle synthesis strategies to produce large numbers of optically encoded particle suitable for DNA library synthesis. Multifluorescent particles with unique and reproducible optical signatures (i.e., fluorescence and light-scattering attributes) suitable for high-throughput flow cytometry have been produced. In the spectroscopic study presented here, we investigated the optical characteristics of multi-fluorescent particles that were synthesized by coating silica 'core' particles with up to six different fluorescent dye shells alternated with non-fluorescent silica 'spacer' shells. It was observed that the diameter of the particles increased by up to 20% as a result of the addition of twelve concentric shells and that there was a significant reduction in fluorescence emission intensities from inner shells as an increasing number of shells were deposited.
Resumo:
This paper describes the modification of a two-dimensional finite element long wave hydrodynamic model in order to predict the net current and water levels attributable to the influences of waves. Tests examine the effects of the application of wave induced forces, including comparisons to a physical experiment. An example of a real river system is presented with comparisons to measured data, which demonstrate the importance of simulating the combined effects of tides and waves upon hydrodynamic behavior. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Despite its widespread use, the Coale-Demeny model life table system does not capture the extensive variation in age-specific mortality patterns observed in contemporary populations, particularly those of the countries of Eastern Europe and populations affected by HIV/AIDS. Although relational mortality models, such as the Brass logit system, can identify these variations, these models show systematic bias in their predictive ability as mortality levels depart from the standard. We propose a modification of the two-parameter Brass relational model. The modified model incorporates two additional age-specific correction factors (gamma(x), and theta(x)) based on mortality levels among children and adults, relative to the standard. Tests of predictive validity show deviations in age-specific mortality rates predicted by the proposed system to be 30-50 per cent lower than those predicted by the Coale-Demeny system and 15-40 per cent lower than those predicted using the original Brass system. The modified logit system is a two-parameter system, parameterized using values of l(5) and l(60).